Yogurt as precision medicine, or how your gut might be undermining your health

The gut microbiome is a community of microorganisms that lives in our gastrointestinal tract. It is so far, the most studied microbial community in healthy humans, because of its known role in a range of functions and diseases, like Inflammatory Bowel Disease (IBD)1,2.

To gain perspective on the magnitude of the bacterial presence inside of us, and potential effects on our bodies, the human body expresses 20,000 eukaryotic genes while the gut microbiome expresses 3.3 million prokaryotic genes. This suggests that the genetic contribution of the microbiome to humans may be many hundreds of times greater than the genetic contribution from the human genome.

Most of the microbes in the microbiome do not cause disease. In fact, we need them to perform many important functions that we cannot do ourselves. Microbes digest food to generate nutrients for host cells, synthesize vitamins, help to absorb nutrients and minerals, produce short-chain fatty acids, metabolize drugs, detoxify carcinogens, stimulate renewal of cells in the gut lining, and activate and support the immune system1

The fermentation by-products acetate, propionate, and butyrate are important for gut health; and, provide energy for epithelial cells, enhance the integrity of the epithelial barrier, and provide immunomodulation and protection against pathogens1

Current investigations explore resident bacterial gene function, and the potential role it might have in human health and metabolism. Each individual has its own microbiome, and no one common microbe is present in all body sites or all individuals. 

Researchers identified the composition of different individual microbiomes, but they also identified the metabolic pathways of the microbial communities found in different body sites (e.g., skin, colon, liver…).  What is interesting is that microbial membership diverges greatly between healthy individuals; but, the metabolic pathways of our own microbiomes is very similar, with common ‘housekeeping’ properties that maintain cell function and a functional body site ecosystem3,4.

The interactions between the gut microbiota and our bodies immune system begins at birth4. The microbiota shapes the development of the immune system; and, in turn, the immune system shapes the composition of the microbiota. This cross-talk between the microbes and our bodies is transmitted through a vast array of signaling pathways that involve many different classes of molecules, and extend upon multiple organs such as the gut, liver, muscle, and the brain. This creates axes of metabolic pathways, or highways of chemical communication, between the gut and the different organs in our bodies.

Because the gut microbiome is highly malleable, it can be altered throughout our lifespan by environmental factors, such as diet, stress and medication. What we have seen during the last 60 years, is an increaseincidence of gut dysbiosis, which is an imbalance in the intestinal bacteria that leads to disease.

As such, there is much interest in developing new therapeutic tools for manipulating the composition of the gut microbiota to benefit our health. A better understanding of how variations in this symbiotic relation within us, supraorganisms, will contribute to disease risk and health sustainability; and, will point the way to new therapeutic interventions and disease prevention strategies.

Danone, a leading yogurt multinational food corporation, is developing “precision probiotics”, for example. Researchers at Danone aim to tailor probiotics to an individual’s diet, phenotype, lifestyle, age, gender, genetics and microbiome. The intention it’s to bring to the gut activities or functions that are not provided by our own gut microbiome, or our own genes.

It’s funny that around 1920’s, Isaac Carasso, the creator of Danone, first started selling yogurt in pharmacies, using ferments isolated from the Institute Pasteur, and label it as health-food. It’s like going full circle.


1          Bordigoni, A., Halary, S. & Desnues, C. in Encyclopedia of Virology (Fourth Edition) Vol. https://www.sciencedirect.com/topics/medicine-and-dentistry/gut-microbiome  (eds Dennis H. Bamford & Mark Zuckerman)  552-558 (Academic Press, 2021).

2          Lloyd-Price, J. et al. Multi-omics of the gut microbial ecosystem in inflammatory bowel diseases. Nature 569, 655-662, doi:10.1038/s41586-019-1237-9 (2019).

3          Visconti, A. et al. Interplay between the human gut microbiome and host metabolism. Nature Communications10, 4505, doi:10.1038/s41467-019-12476-z (2019).

4          Nicholson, J. K. et al. Host-Gut Microbiota Metabolic Interactions. Science 336, 1262-1267, doi:10.1126/science.1223813 (2012).