Psilocybin & Psilocin: Serotonin’s funny cousins

or the Magic Mushrooms Keychain

“Magic mushrooms” are fungi that contain Psylocibin

When we ingest Psylocibin, it gets degraded by the acid juices of our stomachs and loses its phosphate group (P), giving rise to a compound called Psilocin.

Psilocybin de-phosphorylation to Psilocin @countlesssheep.com
Psilocybin de-phosphorylation to Psilocin

What is interesting is that Psilocin (organic name: 4-hydroxy-N,N-dimetiltryptamine) is very similar to Serotonin – a very important neurotransmitter involved in our mood, learning and a plethora of other fundamental physiological processes.

Psilocin & Serotonin: similarities and differences @countlesssheeo.com
Psilocin & Serotonin: similarities and differences

As such, when Psilocin reaches our prefrontal cortex, it can easily bind to our serotonin receptors, because they look so similar – it’s like two old keys that look almost alike and can open the same door at our grandmother’s house.

But Psilocin and Serotonin are indeed different. 

As such, Psilocin is able to do certain things in our brains when it binds to the similar Serotonin “door lock”, causing hallucinations and emotional changes that seem to alter the perception of space and time. Psilocin is like that funny cousin that can create chaos when it comes to visit during summer vacations… And, not all trips seem to be good trips, because as all things in life, a lot depends on the surrounding environment and the dosage. So, if a person comes through that door in a poor state of mind, it will just go down the “dark-hole” even further – so they say…

In fact a couple of years back, psychopharmacologists Robin Carhart-Harris and David Nutt from the Imperial College London did a fMRI study (functional magnetic resonance imaging) to evaluate the effects of Psilocybin in the brain2, and decided to give it IV (intravenously) to quicken the trip-effect because they were scared the “voyage” inside of the tight-noisy fMRI machine could be scary for the 30 individuals high on Psilocybin3. The results were quite interesting and showed that the effects of this psychedelic drug could be caused by a decreased activity and connectivity in the brain’s key connector hubs, like enabling a state of unconstrained cognition3. It seems  Psilocybin reduced the blood flow and neural activity in the posterior cingulate cortex and medial prefrontal cortex – almost like making a “software reset” of the brain. 

As such, Psilocin has been considered a serotonergic psychedelic compound; and it has been banned since the 70’s because people at the time thought it had no therapeutic value.

But Psilocin seems to have an effect in the treatment of Major Depressive Disorder (MDD), a leading cause of disability worldwide. Robin von Rotz and team at the Neurophenomenology of Conscious Lab from the University of Zürich, Switzerland, have just released the results of a randomized double-blind clinical trial 1. This clinical study showed that a single, moderate dose of Psilocybin (0.215 mg/Kg) significantly reduced depressive symptoms compared to a placebo, the “sugar-pill” that they give to the control group.

Even though the results were only evaluated for a period of two weeks after ingestion, the depression severity scores significantly improved in the treated patients in comparison with controls. So, this is one of the first clinical studies to actually demonstrate improvements directly attributed to Psilocybin/Psilocin itself. If we think that the state of deep depression is actually a neural circuitry disfunction, then Psilocin with its similar key structure to Serotonin might be able to open and clean the faulty neuronal-wires that contribute to the brain disfunction seen in MDD.

Several larger clinical studies are currently under way that could eventually pave the way to full regulatory approval, and the removal of Psilocybin from the banned WHO list of pure psychedelic drugs. The U.S. Food and Drug Administration already gave psilocybin the “breakthrough therapy” designation for MDD and Treatment-Resistant Disorder; and, in Australia some psychiatrist can have permission to use it under certain conditions for Post-Traumatic Stress Disorder. The European Medicines Agency (EMA) is following suit, and its Chief Medical Officer has just released a statement that it is actively engaged with developers of psychedelic therapies and academic researchers to help them identify what it takes to move forward and fully bring psychedelics as medical therapies to our pharmacies (and not street dealers)4.

We will be on the lookout for those results…

Fan shape mushrooms

References:

1          von Rotz, R. et al. Single-dose psilocybin-assisted therapy in major depressive disorder: a placebo-controlled, double-blind, randomised clinical trial. eClinicalMedicine 56 (2023). https://doi.org:10.1016/j.eclinm.2022.101809

2 Carhart-Harris, R. L. et al. The administration of psilocybin to healthy, hallucinogen-experienced volunteers in a mock-functional magnetic resonance imaging environment: a preliminary investigation of tolerability. J Psychopharmacol 25, 1562-1567 (2011). https://doi.org:10.1177/0269881110367445

3        Miller, G. Mapping the psychadelic brain. Science Brain & Behaviour (2012). https://doi.org:10.1126/article.27824

4   https://www.linkedin.com/pulse/second-chance-psychedelics-european-medicines-agency

Cultivated meat, anyone?!

It is well known that a growing global population drives an increased meat consumption. As such in response, there has been a huge movement to find other protein sources besides animal meat. By now, insects, plants or fungus-based substitutes combined with soy, wheat gluten or pea protein have become staples at our local supermarket.

This drive has also led to the development of “cultivated meat” as an alternative source of protein. This “cultivated meat” is produced in the laboratory by a process that is commonly used in medical tissue engineering, to regenerate skin patches for example to treat burn wound victims.

As such, the first patty grown from cells sourced directly from an animal happened in 2013; and the first commercial sale of cell-culture meat derived from chicken cells happened in a Singapore restaurant in December 2020. There’s currently a lot of hype from start-ups and regulatory agencies to get this process rolling in a more efficient and standard way.

So, the objective of this regenerative procedure is to recreate the complex structure of an animal muscle using only a small number of cells. A biopsy is taken from the muscle of a live animal, and this piece of tissue is cut into small pieces to release the stem cells, which then have the ability to multiply and transform themselves into different kinds of cells depending on the medium that they are grown. As such, once these cells are cultured in a specific liquid medium, which usually contains Fetal Bovine Serum (FBS) – a serum made from the blood of a dead calf, which contains all the nutrients needed – these cells will start to grow and proliferate. Rumour goes that start-ups are already working on finding plant ingredients that can be as efficient and nutritious growing cells as FBS – which is quite expensive, and of course not animal-friendly.

Trillion of cells can be grown this way, and the marvel with nature is that these cells can naturally merge to form muscle tubes (myotubes), which can then grow to form small pieces of muscle tissue – and eventually make up a patty. To scale this process, bioreactors are used, which work similarly to the way different pharmaceutical drugs are currently produced.

Unfortunately, the resulting patty is still far away from real muscle, which is made up of organized fibers, blood vessels, nerves, connective tissue and fat cells; as such, producing a thick piece of meat like a real steak is only a vision. “Cultivated meat” lacks the natural process of reperfusion, which is the bubbling of oxygen perfusion of blood vessels inside the meat necessary to mimic real-time nutrient diffusion. Furthermore, the richness of flavors is still significantly lower than traditional meats; with umami, bitterness and sourness still lacking due to a diminished amount of different aminoacids – the building blocks that form a protein. It’s like, such in vitro patties are only made of blue and yellow LegoTM, missing all the other colors that will make us feel fulfilled.

The problem remains that this food cannot be called vegan, because it comes originally from animal cells – whether from a chicken, or a cow, or even a frog…. And, growing meat in the lab is also not cheap at all. High amounts of liquid serum are needed to grow a couple plates of cells, not to mention grow a couple of patties to feed a family of four. Furthermore, there is a need to warm the cultured cells to mimic body temperature, so that energy needs to come from somewhere, probably coupled with CO2 emissions if fossil fuels are used. Additionally, fast growing cells are a known trigger to develop cancer – so, there needs to be a strong safety and quality assessment to make sure that cancerous cells have not developed in those in vitro meats. And another major issue is contamination: without the use of antibiotics or some other pharmaceutical means of pathogenic control, there is a high likelihood of a fully diverse & inclusive germs-party happening in those cell plates.

But truth be told, the current pressure on our food system and the increasing demands for food security, make a strong argument to find solutions for all environmental and health concerns that might arise from the field of “cultivated meat”. 

It might take some years, but it will be coming to our tables…

Would you try it?

Meatlove
Meatlove…

References:

Fountain, H. Building a $325,000 Burger. The New York Times https://www.nytimes.com/2013/05/14/science/engineering-the-325000-in-vitro-burger.html, 1 (2013). 

Chriki S, Hocquette JF. The Myth of Cultured Meat: A Review. Front Nutr. 2020 Feb 7;7:7. doi: 10.3389/fnut.2020.00007. PMID: 32118026; PMCID: PMC7020248.

Joo ST, Choi JS, Hur SJ, Kim GD, Kim CJ, Lee EY, Bakhsh A, Hwang YH. A Comparative Study on the Taste Characteristics of Satellite Cell Cultured Meat Derived from Chicken and Cattle Muscles. Food Sci Anim Resour. 2022 Jan;42(1):175-185. doi: 10.5851/kosfa.2021.e72. Epub 2022 Jan 1. PMID: 35028582; PMCID: PMC8728501.

Smell-locked memories: our infancy in odours

The sense of smell emerges very early in human foetal development; and, research shows that the association of odours with learning begins very early in life while we are still in our mother’s womb 1,2. In fact, to some extent it was shown that if we appreciate a certain smell or not soon after we are born, it much depends on whether our mothers ingested that specific fragrant food during the pregnancy or not 1.

Furthermore, studies suggest that human olfaction is unique in its ability to cue the emotional aspects of autobiographical memory, including experiences formed early in life3 – the so-called Proust phenomenon. In “Swann’s Way”, the first volume of “À la recherche du temps perdu”, Marcel Proust as a nostalgic incident of involuntary memory, which is recalled by dipping madeleines in lime-flower tea when sitting next to its aunt Léonie before going to church on Sunday mornings in Combray. 

Such odour memories can convey an intense vivid visceral sense of the past, as if it was being re-experienced 4; with odour-cued memories described as more vivid than memories evoked by corresponding words or pictures 5. Specifically, most odour-cued memories are locked in the first decade of our lives (<10 years), whereas memories associated with verbal and visual cues seem to peak during early adulthood (11–20 years) 2,6. Also, odour-evoked memories were shown to be rarer and less frequently thought about 7.

The reason for such exceptionally visceral and vivid experience when recalling such memories relates to the fact that the olfaction has a privileged and unique connection to the neural anatomic substrates of emotion and associative-learning. In our brain, the primary olfactory cortex includes the amygdala – which processes emotional experience and emotional memory; as well as the hippocampus, which is involved in associative-learning 4. As such, just the act of smelling immediately activates the amygdala-hippocampal complex. Furthermore, while we are recollecting an odour-evoked memory, the amygdala is more activated than when we smell similar odours that do not evoke a memory 8. Additionally, the second olfactory cortex (orbitofrontal cortex) specifically assigns an affective value to that stimulus, that specific odour, and determines a reinforcement value – none of our other senses does that 4,5,8.

Not only pleasant memories can be triggered, but odours are especially effective at triggering fearful or traumatic memories that help us be aware of future danger. Recently, Hakim and colleagues from Queensland University of Technology of Brisbane, Australia, have shown that in mice, by testing olfactory fear memory recall after 24h, they could see behavioural and cellular changes of long-term reconsolidated memory that could return to a labile state after 14 days 9. This organic malleability seen by an increased density of pCREB- (phosphorylated cyclic adenosine monophosphate response element binding protein) and pMAK- (phosphorylated mitogen-activated protein kinase) -positive immunoreactive neurons in the medial/cortical subnuclei of the amygdala and the posterior piriform cortex of mice, might allow one day for us to manipulate such reactivating fear memories and create conditions to prevent reconsolidation – avoiding that such fears and traumas could hunt us again.

In a simplistic sense, like other animals of the natural kingdom which are guided by their highly conserved olfactory sensory system in their daily lives, our memories can also be smell-locked inside to guide us through life. 

Smells
Home

References

1          Schaal, B., Marlier, L. & Soussignan, R. Human foetuses learn odours from their pregnant mother’s diet. Chem Senses 25, 729-737 (2000). https://doi.org:10.1093/chemse/25.6.729

2          Mouly AM, S. R. Memory and Plasticity in the Olfactory System: From Infancy to Adulthood Vol. Chapter 15 (CRC Press/Taylor & Francis, 2010).

3          Chu, S. & Downes, J. J. Proust nose best: odors are better cues of autobiographical memory. Mem Cognit 30, 511-518 (2002). https://doi.org:10.3758/bf03194952

4          Herz, R. S. The Role of Odor-Evoked Memory in Psychological and Physiological Health. Brain Sci 6 (2016). https://doi.org:10.3390/brainsci6030022

5          Herz, R. S. & Schooler, J. W. A naturalistic study of autobiographical memories evoked by olfactory and visual cues: testing the Proustian hypothesis. Am J Psychol 115, 21-32 (2002). 

6          Willander, J. & Larsson, M. Smell your way back to childhood: autobiographical odor memory. Psychon Bull Rev 13, 240-244 (2006). https://doi.org:10.3758/bf03193837

7          Miles, A. N. & Berntsen, D. Odour-induced mental time travel into the past and future: do odour cues retain a unique link to our distant past? Memory 19, 930-940 (2011). https://doi.org:10.1080/09658211.2011.613847

8          Herz, R. S., Eliassen, J., Beland, S. & Souza, T. Neuroimaging evidence for the emotional potency of odor-evoked memory. Neuropsychologia 42, 371-378 (2004). https://doi.org:10.1016/j.neuropsychologia.2003.08.009

9          Hakim, M. et al. Retrieval of olfactory fear memory alters cell proliferation and expression of pCREB and pMAPK in the corticomedial amygdala and piriform cortex. Chemical Senses 47 (2022). https://doi.org:10.1093/chemse/bjac021

When do you have the munches?

In an healthy state, when we eat more than we burn, we get fat. Period.

The surplus of calories that we eat are stored or used in two different kinds of fat cells:  White Adipocytes, or Brown/Beige Adipocytes

White Adipocytes are giant gobble fat cells that accumulate fat. 

On the other hand, Brown/Beige Adipocytes accumulate small drops of fat in their intracellular space that are used has “fire wood” to promote thermogenesis. These special types of coloured fat cells have an increased number of mitochondria that can dissipate significant amounts of chemical energy, through a special uncoupled respiration mechanism that produces heat1 – which makes us warm in the cold days, hot after exercising, or have hot flashes if going through hormonal changes.

As I wrote previously, our body is controlled by molecular clocks – which are set by the day/night cycle orderly managed by the sun planetary system we live in. The input of sun rays is the main trigger that controls our circadian rhythms, which activate the main clock in our body that is situated in the brain suprachiasmatic nucleus (SCN) of the hypothalamus.

Besides de-clogging our synapses through sleep, it is now known that these molecular clocks also control the rhythmic expression of numerous genes that regulate diverse physiological outputs, such as energy intake-and-use during the day2.

Recently, Chelsea Hepler and colleagues3 from the Feinberg School of Medicine of the Northwestern University in Chicago, discovered that restricting high-caloric feeding to the active period of the day in mice, switches the storage of fat to the thermogenesis cells – i.e. extra calories eaten during the active period of the circadian cycle (the day, for us humans) get stored in the Brown/Beige Adipocytes.

Furthermore, if fed in the right time such Brown/Beige Adipocytes have a greater energy expenditure. This happens because they are able to switch ON an extra round of futile energy burning cycle in the mitochondria; and, they do that by increasing the synthesis of Creatinine, a common waste product of our cells3

These experiments might help explain why we get fat when we hit the fridge in the middle of the night. That is not our active cycle, our Brown/Beige Adipocytes are in rest mode – as should we.

So, if we have thoughts of about munching that giant piece of Parmigiano after 21h – it’s better we think twice. Let’s eat it in the morning. 

And, to make it even better – then, we walk to work.

Telamon Head, in Archaeological Museum "Pietro Griffo" of Agrigento
Telamon Head, in Archaeological Museum “Pietro Griffo” of Agrigento, Sicily

References

1          Fenzl, A. & Kiefer, F. W. Brown adipose tissue and thermogenesis. Horm Mol Biol Clin Investig 19, 25-37 (2014). https://doi.org:10.1515/hmbci-2014-0022

2          Lagarde, D. & Kazak, L. The timing of eating controls energy use. Science 378, 251-252 (2022). https://doi.org:doi:10.1126/science.ade6720

3          Hepler, C. et al. Time-restricted feeding mitigates obesity through adipocyte thermogenesis. Science 378, 276-284 (2022). https://doi.org:doi:10.1126/science.abl8007

Scleractinia & Symbiodinium: a tragic love story

The exchange of small molecules, or metabolites, between organisms and their environment gives rise to the complexity of life on Earth1. One of the examples of such complexity is ourselves, our body and the full array of microorganisms (microbiota) that live on and in us, humans. 

Just like us, stony corals (Scleractinia) also live in a symbiosis with associated microorganisms. These include bacteria, archea, fungi, viruses, and single-cellular algae called Symbiodinium.

Under normal conditions, these algal cells provide 90 to 95% of the energy required for stony corals to live happily1. The algae provide lipids, carbohydrates, amino acids, and O2 to Scleractinia. In return, the algae get to recycle nitrogen and other inorganic compounds from the coral, that they can use to fuel their own cell metabolism.

Climate change causes a rise in water temperatures; and, this form of environmental heat stress, disrupts the symbiotic relationship between corals and its algae, which results in coral bleaching. 

Researchers have now discovered that heat stress destabilizes this basic nutrient exchange between corals and their algae; and, this turn of events happens long before the bleaching process becomes obvious. 

In fact, Rädecker and his colleagues2 at the Red Sea Research Centre, discovered that heat stress causes the coral to need more energy, which swings the coral-algae symbiosis from a nitrogen- to a carbon-limited state. This actually ends up reducing the movement and recycling of carbon, and creates an animosity between these life partners. 

The coral starts disliking the algae, because the algae it’s not fully doing its work – recycling carbon. As such, the stony coral starts thinking that sheltering such lazy algae is not beneficial anymore. On top of that, the poor coral needs to catabolically degrade more aminoacids, to compensate for the increased energy demands triggered by the warmer waters. Such demanding “cooking tasks” from the coral side, create fury, and actually increase the release of ammonium; which in turn, promote the algae to grow. So, not only does the algae not clean the building properly, but calls its algal friends and they move in. 

Under stress, the coral kicks the algae out. But since this marriage is essential to its life support, the Scleractinia cannot feed itself properly anymore. The stony coral goes hungry, and slowly dies out….

Poor coral…

Underwater love

References:

1          Williams, A. et al. Metabolomic shifts associated with heat stress in coral holobionts. Science Advances 7, eabd4210, doi:doi:10.1126/sciadv.abd4210 (2021).

2          Rädecker, N. et al. Heat stress destabilizes symbiotic nutrient cycling in corals. Proceedings of the National Academy of Sciences 118, e2022653118, doi:10.1073/pnas.2022653118 (2021).

The language of serotonin

Or, “What are they saying?

When we mention the word Serotonin (5-hydroxytryptamine, 5-HT), we immediately think of the brain and the Central Nervous System (CNS). People tend to associate serotonin to depression, or mood, or feelings of well-being1

Although that is correct, truth be told, the majority of the serotonin in the human body is actually produced in the gut. In fact, 95% of total serotonin is manufactured by the Enterochromaffin cells (or, Kulchitsky cells) in the gastro-intestinal tract (GI)2,3. These cells live next to the gut epithelium, that covers the cavity of the GI tract, playing a crucial role in the regulation of bowel movements and secretions. If you think that the gut is almost 9 meters (or 30 feet) long, then that’s a lot of cells producing serotonin. 

When in the 50’s, Betty M. Twarog and Irvine H. Page discovered that the brain produced its own serotonin4; then, the gut-made serotonin got reduced to its “Aschenputtel” origins, and relinquished to the favela quarters of the body. As such, brain-derived serotonin always got more attention than its gut-derived counterpart – like a rich vs. poor-cousin type of reputation.

Moving-on…

Platelets, also called thrombocytes, are small un-nucleated fragment of cells that, when activated, form blood clots (thrombus) and prevent bleeding. 

Electron microscopy images of circulating platelets, extracted from Zilla et al, 19875

Platelets do not make serotonin, butcan take it up as they circulate through the gut, and carry it along the blood stream6,7. As such, the serotonin produced in the intestine can be carried all over the body. As the chemical messenger serotonin is, it can influence any other cell, in whatever other location, as long as it has a serotonin receptor on it. As such, peripheral serotonin has now discovered its path back into the limelight, and recent research has strengthened the influence that gut-made serotonin has in other parts of the body, functioning as an intestinal-derived hormone. 

Once again, the “Aschenputtel” story comes into mind, but this time through its “Cinderella” version. Let’s take a look…

For example, gut-derived serotonin can directly regulate the liver and mediate liver regeneration8. In Non-Alcoholic Fatty Liver Disease (NAFLD), a group of conditions that are characterized by excessive fat accumulation in the liver and closely track the global public health problem of obesity, researchers showed that inhibiting gut-derived serotonin synthesis could resolve hepatic fat accumulation8,9.

Peripheral serotonin can also be a negative regulator of bone density, by specifically inhibiting osteoblast formation and leading to osteoporosis10 – a common feature in patients with inflammatory bowel disease (IBD). This happens through the action of a common receptor: the low-density Lipoprotein Receptor-related Protein 5(LRP5), which is expressed in both osteoblasts and enterochromaffin cells11. LRP5 inhibits the expression of an important ingredient for serotonin production (Tryptophan hydroxylase-1, Tph1); as such, when LRP5 is deficient or inactivated due to inflammation or disease, blood levels of serotonin are elevated decreasing osteoblast formation; and, consequently, reducing bone mass1,11.

Epidemiologic data suggests a role of serotonin, or Selective Serotonin-Reuptake Inhibitors (typically used as antidepressants, SSRIs) in the development of venous thrombosis12. In fact, patients with depression were reported to have higher incidences of venous thromboembolism in general13; and, the use of SSRIs is associated with an increased venous thromboembolism risk14. No wonder, serotonin and platelets are “brothers in arms”, ready to block any blood vessel along their way…. 

Serotonin and its receptors are also present in the immune system, where evidence suggests it contributes to both innate and adaptive responses. There is now clear evidence of a straight communication between the immune system, the gut and the brain via serotonin15,16.

On top of all and because we are not alone, our gut microbiota plays a critical role in regulating our colonic serotonin. Indigenous spore-forming bacteria (Sp) promote serotonin biosynthesis in our enterochromaffin cells, and with that they can significantly modulate GI movements and platelet function – together with many aspects of our physiology17,18. We now know that the microbiota colonizes the GI tract after birth, with a continuous maturation during the first years of life19. Researchers have now showed in animal models that this developing gut microbiota regulates the development of the adult enteric nervous system via intestinal serotonin networks20. What this actually means, is that the actions of our intestinal bugs during the beginning of our life are determinant for the development of our “gut brain”, our second brain. How about that?…

If we ruminate about it, when we “think” with our gut, we are actually listening to our bugs. By directly signalling our cells to produce serotonin and develop a network of neurons as soon as we are born, our gut-bugs are actually finding a way to communicate with us – the host – in the serotonin language. 

Now, we just need to understand what are they telling us… 

Beethoven’s hearing aids, Beethoven House Museum, Bonn.

References:

1          Gershon, M. D. 5-Hydroxytryptamine (serotonin) in the gastrointestinal tract. Curr Opin Endocrinol Diabetes Obes 20, 14-21, doi:10.1097/MED.0b013e32835bc703 (2013).

2          Bellono, N. W. et al. Enterochromaffin Cells Are Gut Chemosensors that Couple to Sensory Neural Pathways. Cell 170, 185-198.e116, doi:10.1016/j.cell.2017.05.034 (2017).

3          Yaghoubfar, R. et al. Modulation of serotonin signaling/metabolism by Akkermansia muciniphila and its extracellular vesicles through the gut-brain axis in mice. Scientific Reports 10, 22119, doi:10.1038/s41598-020-79171-8 (2020).

4          Twarog, B. M. & Page, I. H. Serotonin Content of Some Mammalian Tissues and Urine and a Method for Its Determination. American Journal of Physiology-Legacy Content 175, 157-161, doi:10.1152/ajplegacy.1953.175.1.157 (1953).

5          Zilla, P. et al. Scanning electron microscopy of circulating platelets reveals new aspects of platelet alteration during cardiopulmonary bypass operations. Tex Heart Inst J 14, 13-21 (1987).

6          Morrissey, J. J., Walker, M. N. & Lovenberg, W. The absence of tryptophan hydroxylase activity in blood platelets. Proc Soc Exp Biol Med 154, 496-499, doi:10.3181/00379727-154-39702 (1977).

7          Hughes, F. B. & Brodie, B. B. The mechanism of serotonin and catecholamine uptake by platelets. J Pharmacol Exp Ther 127, 96-102 (1959).

8          Wang, L. et al. Gut-Derived Serotonin Contributes to the Progression of Non-Alcoholic Steatohepatitis via the Liver HTR2A/PPARγ2 Pathway. Frontiers in Pharmacology 11, doi:10.3389/fphar.2020.00553 (2020).

9          Choi, W. et al. Serotonin signals through a gut-liver axis to regulate hepatic steatosis. Nature Communications 9, 4824, doi:10.1038/s41467-018-07287-7 (2018).

10        Lavoie, B. et al. Gut-derived serotonin contributes to bone deficits in colitis. Pharmacol Res 140, 75-84, doi:10.1016/j.phrs.2018.07.018 (2019).

11        Yadav, V. K. et al. Lrp5 controls bone formation by inhibiting serotonin synthesis in the duodenum. Cell 135, 825-837, doi:10.1016/j.cell.2008.09.059 (2008).

12        Rieder, M., Gauchel, N., Bode, C. & Duerschmied, D. Serotonin: a platelet hormone modulating cardiovascular disease. J Thromb Thrombolysis 52, 42-47, doi:10.1007/s11239-020-02331-0 (2021).

13        Takeshima, M. et al. Prevalence of Asymptomatic Venous Thromboembolism in Depressive Inpatients. Neuropsychiatr Dis Treat16, 579-587, doi:10.2147/NDT.S243308 (2020).

14        Parkin, L. et al. Antidepressants, Depression, and Venous Thromboembolism Risk: Large Prospective Study of UK Women. J Am Heart Assoc 6, doi:10.1161/jaha.116.005316 (2017).

15        Baganz, N. L. & Blakely, R. D. A dialogue between the immune system and brain, spoken in the language of serotonin. ACS Chem Neurosci 4, 48-63, doi:10.1021/cn300186b (2013).

16        Jacobson, A., Yang, D., Vella, M. & Chiu, I. M. The intestinal neuro-immune axis: crosstalk between neurons, immune cells, and microbes. Mucosal Immunology 14, 555-565, doi:10.1038/s41385-020-00368-1 (2021).

17        Yano, J. M. et al. Indigenous bacteria from the gut microbiota regulate host serotonin biosynthesis. Cell 161, 264-276, doi:10.1016/j.cell.2015.02.047 (2015).

18        Reigstad, C. S. et al. Gut microbes promote colonic serotonin production through an effect of short-chain fatty acids on enterochromaffin cells. Faseb j 29, 1395-1403, doi:10.1096/fj.14-259598 (2015).

19        Bäckhed, F. et al. Dynamics and Stabilization of the Human Gut Microbiome during the First Year of Life. Cell Host Microbe 17, 690-703, doi:10.1016/j.chom.2015.04.004 (2015).

20        De Vadder, F. et al. Gut microbiota regulates maturation of the adult enteric nervous system via enteric serotonin networks. Proc Natl Acad Sci U S A 115, 6458-6463, doi:10.1073/pnas.1720017115 (2018).

Precision: the new Tinder Belle of the Heart

Precision medicine is an emerging approach to medical care.  It takes into account individual variations in genetic make-up, metabolism and other biological and environmental factors, to better determine which treatment and prevention strategies for a particular disease may work better for which groups of people1.

Today, precision medicine is routinely integrated into the care of cancer patients, and has provided substantial increases in cancer free survival2. For example, translational studies investigating signatures within the tumour that promote disease progression, can predict individual responses to standard and targeted chemotherapy regimens2,3.

In the cardiovascular field, even though the prognosis for people with heart failure has improved in recent decades as research studies demonstrate the effectiveness of various medications, precision medicine is still in its infancy.

Some aspects of precision medicine are routinely used by healthcare providers, like the blood level of the biomarker called B-type natriuretic peptide, which is a sensitive indicator of whether heart failure is worsening or if treatments are helping1,4. This biomarker can also help the doctor determine whether shortness of breath symptoms in an individual are due to heart failure, or another medical problem1.

But as it is now, patients diagnosed with heart failure are still offered essentially identical treatments, regardless of whether their disease was caused by coronary artery disease, genetic mutations, or an autoinflammatory processes2

Also, historically, clinical trial participants have been predominantly white people with particular genetic variants; but, individuals with different racial and ethnic ancestry have different genetic variants, and therefore, may not have the same response to a certain medication or treatment1.

While this “one-size-fits-all’ approach has led to improvements in clinical outcomes in large populations, the individual response rates continue to vary tremendously; and, it is often difficult to distinguish patients who will achieve a favourable response, from those who will experience disease progression, and ultimately succumb to their illness2.  

As such, in the cardiovascular field, it is urgent to personalize heart failure care by identifying groups of patients more likely to develop heart failure, and tailoring which medications and other therapies could be most effective for them1. Currently, many individuals are left poorly treated, and there is substantial room for improvement2.

Key studies demonstrating selective efficacy of certain drugs in patients harbouring specific genetic variants, indicate a direction where treatment responses can be predicted using individual genetic information. 

Given the recent cost reductions in exome sequencing, for example, this can now be used routinely to identify genetic variants that predict heart failure prognosis, and specific responses to medical and device-based therapies. Such information can further provide critical insights into new disease mechanisms, like Lamin A mutations that display a molecular phenotype that is dramatically distinct from other forms of dilated cardiomyopathy5

More and more we come to realize that despite a common surface phenotype or symptomology, certain mutations may actually give rise to distinct diseases that need to be appropriately treated.

As such, researchers need to increase clinical trial diversity, so that optimal treatment approaches can be found for each population group. Also, the power of supercomputing should be used to rapidly predict the outcomes of possible new treatments. And, processes for sharing information across large databases shouldbe put in place with guarantees of patient privacy (e.g., cloud-based platforms), so that clinicians/scientists can quickly collaborate and share data internationally.

Moreover, updated health-wearable devices, artificial intelligence and other deep learning technologies strategies will ultimately be employed to develop testable hypotheses from large datasets, and provide precision-personalized approaches to cardiovascular health care.

Let’s hope Precision will be more than a one night stand on Heart’s Tinder list….

Yayoi Kusama art installation, Berlin Modern Art Museum

References:

1          AHA. Emerging practice of precision medicine could one day improve care for many heart failure patients. Heart.org https://newsroom.heart.org/news/emerging-practice-of-precision-medicine-could-one-day-improve-care-for-many-heart-failure-patients?utm_campaign=sciencenews19-20&utm_source=science-news&utm_medium=phd-link&utm_content=phd09-12-19 (2019).

2          Kory J. Lavine, C. E. C. Precision Medicine for Heart Failure: using “omics” technologies to find the road to personalized care. Heart.org https://professional.heart.org/en/science-news/heart-failure-in-the-era-of-precision-medicine/Commentary (2021).

3          Prasad, V., Fojo, T. & Brada, M. Precision oncology: origins, optimism, and potential. Lancet Oncol. https://linkinghub.elsevier.com/retrieve/pii/S1470-2045(15)00620-8 17, e81-e86, doi:10.1016/s1470-2045(15)00620-8 (2016).

4          Maisel, A. B-Type Natriuretic Peptide Levels: Diagnostic and Prognostic in Congestive Heart Failure. Circulation. https://www.ahajournals.org/doi/10.1161/01.CIR.0000019121.91548.C2 105, 2328-2331, doi:doi:10.1161/01.CIR.0000019121.91548.C2 (2002).

5          Cheedipudi, S. M. et al. Genomic Reorganization of Lamin-Associated Domains in Cardiac Myocytes Is Associated With Differential Gene Expression and DNA Methylation in Human Dilated Cardiomyopathy. Circ Res. https://pubmed.ncbi.nlm.nih.gov/30739589/ 124, 1198-1213, doi:10.1161/circresaha.118.314177 (2019).

Let’s get physical!

A healthy lifestyle is the cornerstone of cardiovascular health.

Lifestyle interventions are already a key component of primary prevention in low-risk cardiovascular disease groups, and serve as an important aide to pharmacotherapy in higher-risk groups. 

But according to the new guidelines by the American Heart Association (AHA) and the American College of Cardiology (ACC)1, a first line of therapy for mild to moderate–risk groups are lifestyle-only approaches for a proper blood pressure and blood cholesterol management.

As such, the next time you go to the doctor, you might get an exercise prescription instead of an order to visit the pharmacy. 

This is a major change in the idea of health, promoted by not taking a pill, but having a look at lifestyle in order to improve health – and avoid the numerous side-effects that certain medications can have. 

An exercise prescription is an individualized physical activity program designed using the Frequency (how often?), Intensity (how hard?), Time (how long?), and Type (what kind?), or the FITT principle developed by the American College of Sports Medicine (ACSM). 

Although most health care professionals and patients are aware that physical activity is recommended for good health, the abundance of scientific and lay recommendations for activity can be difficult to distil. As such, framing the exercise prescription by the FITT principle provides clinicians with more structured guidance on how to recommend exercise to their patients. 

The updated FITT exercise recommendations for adults with elevated blood pressure are the following: 

  • Frequency: in most, preferably all days of the week due to the transient Blood Pressure lowering effects that last for up to 24 hours after an exercise session; 
  • Intensity: Moderate, any intensity of exercise has been shown to lower Blood Pressure;
  • Time: >20 to 30 minutes per day to total >90 to >150 minutes per week of continuous or accumulated exercise of any duration;
  • Type: Emphasize aerobic or resistance exercise alone or combined, due to the recent evidence showing the Blood Pressure lowering effects of exercise do not vary by exercise modality2

The updated FITT exercise prescription recommendations propose more exercise options in less time, that hopefully will translate to better exercise adherence.

As a plus, we should be reminded of the advantageous effects of exercise on brain functions. Acute bouts of physical activity can stimulate transient Serotonin, Dopamine and Norepinephrine activity in the brain3

Furthermore, long-term exercise produces changes in the availability of receptors that can control the release of monoamines, like the Serotonin-1A receptor of the Raphe Nuclei4, and Dopamine-2 receptor in the Striatum5

Regular exercise has antidepressant/anxiolytic properties, and results in dramatic alterations in physiological stress responses. 

In addition to antidepressant and anxiolytic properties, the Serotonin system (5-HT) has also been linked to cognitive function; since, a distress of the 5-HT system is associated with cognitive syndromes, such as Alzheimer’s disease6

So, don’t shy away, and take at least a 20 min quick walk today. 

It’s free, and it’s good for you!

My boots were made for walking!

References:

1          Gibbs, B. B. et al. Physical Activity as a Critical Component of First-Line Treatment for Elevated Blood Pressure or Cholesterol: Who, What, and How?: A Scientific Statement From the American Heart Association. Hypertension 0, HYP.0000000000000196, doi:doi:10.1161/HYP.0000000000000196.

2          Pescatello, L. S. et al. Physical Activity to Prevent and Treat Hypertension: A Systematic Review. Med Sci Sports Exerc 51, 1314-1323, doi:10.1249/mss.0000000000001943 (2019).

3          Buhr, T. J. et al. The Influence of Moderate Physical Activity on Brain Monoaminergic Responses to Binge-Patterned Alcohol Ingestion in Female Mice. Front Behav Neurosci 15, 639790-639790, doi:10.3389/fnbeh.2021.639790 (2021).

4          Greenwood, B. N. et al. Freewheel running prevents learned helplessness/behavioral depression: role of dorsal raphe serotonergic neurons. J Neurosci 23, 2889-2898, doi:10.1523/jneurosci.23-07-02889.2003 (2003).

5          Clark, P. J. et al. Wheel running alters patterns of uncontrollable stress-induced cfos mRNA expression in rat dorsal striatum direct and indirect pathways: A possible role for plasticity in adenosine receptors. Behav Brain Res272, 252-263, doi:10.1016/j.bbr.2014.07.006 (2014).

6          Meltzer, C. C. et al. Serotonin in aging, late-life depression, and Alzheimer’s disease: the emerging role of functional imaging. Neuropsychopharmacology 18, 407-430, doi:10.1016/s0893-133x(97)00194-2 (1998).

Skin microbiome: feed it right for a healthier look!

Dry skin and atopic dermatitis have been associated with changes in the variety of the skin microbiome. 

Our skin, as the largest organ in our body, has a huge array of commensal microbes that support a healthy skin barrier. One of those is Staphylococcus epidermidis, one of the most abundant bacterial species of the skin microbiome1.

This chubby mutualistic, Gram-positive, facultative anaerobe constitutes up to 90% of the aerobic resident flora of our skin, and has been associated with a healthy-looking skin2. It does not like to be lonely, and usually appears in pairs or tetrads on the surface of our skin, like a protecting biofilm.

Dry skin, for example, is associated with an increase in microbial diversity along with a decrease in microbial load in comparison to more sebaceous areas of the skin, that are usually populated by lipophilic bacteria such as Cutibacterium acnes – that tend to cause those unwanted teenager-look-a-like pimples that nobody likes…

Lactic Acid is one of the Natural Moisturizing Factors (NMF) of the skin barrier, that is essential to maintain the hydration and a slightly acidic pH of the skin surface (i.e., “acid mantle”)3. Higher lactic acid concentrations and lower skin surface pH are known to increase our epidermal renewal and promote a healthier skin. 

New in vitro data suggests that Staphylococcus epidermidis, may be one of the major sources of lactic acid in the skin1

But only if fed the right way. 

It seems that 1% colloidal oat increases Lactic Acid production by this particular bacteria species, making it rely less on simple sugars such as glucose for its metabolism; and, instead use more complex carbohydrates derived from oat.

Oatmeal-containing skin moisturisers significantly changed the metabolism of the Staphylococcus epidermidis, breaking down starch and promoting good gene expression, with an increased DNA and aminoacid synthesis, and an improved ATP metabolism.

How about that?

Bacteria on a diet makes your skin look healthier!

Next time you think about which moisturiser to buy in the drug store:  don’t forget to feed your skin microbiome it’s oatmeal!

Happy Staphys!

References:

1          Liu-Walsh, F. et al. Prebiotic Colloidal Oat Supports the Growth of Cutaneous Commensal Bacteria Including S. epidermidis and Enhances the Production of Lactic Acid. Clin Cosmet Investig Dermatol 14, 73-82, doi:10.2147/CCID.S253386 (2021).

2          Baviera, G. et al. Microbiota in healthy skin and in atopic eczema. Biomed Res Int 2014, 436921, doi:10.1155/2014/436921 (2014).

3          Thueson, D. O., Chan, E. K., Oechsli, L. M. & Hahn, G. S. The roles of pH and concentration in lactic acid-induced stimulation of epidermal turnover. Dermatol Surg 24, 641-645, doi:10.1111/j.1524-4725.1998.tb04221.x (1998).

Disturbed sleep and Alzheimer’s: a possible new bi-directional sleep/wake switch

Disrupted sleep is a major feature of Alzheimer’s disease (AD), and it usually appears years before symptoms of cognitive decline emerge. 

It seems prolonged wakefulness aggravates the production of amyloid-beta (Aβ) species, which is a major driver of AD progression. 

This sleep loss tends to further accelerate AD, with this tendency becoming a vicious cycle of sleepiness and AD advancement. 

Unfortunately, the mechanisms by which Aβ affects sleep are still unknown and reason for much research. 

Recently, Özcan and team of researchers have shown that in zebrafish, Aβ acutely and reversibly can enhance or suppress sleep in the fish as a function of the length of the oligomer, that is the number of Aβ molecules bounded together. 

Genetic disruption analysis has shown that short Aβ oligomers induce acute wakefulness through Adrenergic receptor b2 (Adrb2) and Progesterone membrane receptor component 1 (Pgrmc1). While longer Aβ forms, can actually induce sleep through a pharmacologically tractable Prion Protein (PrP) signalling cascade. 

What this data shows, is that Aβ can actually trigger a bi-directional sleep/wake switch in the zebrafish. 

And, what this could mean, is that alterations to the brain’s Aβ oligomeric environment, such as during the progression of AD, may lead to disrupt sleep through changes in acute signalling events through similar receptors.

N-of-1 patient: crafting personalised treatments for ultra-rare diseases with AntiSense Oligonucleotide (ASO) technology

The n-of-1 patient is that one person with a unique genetic mutation that causes an ultra-rare disease, designated as a disease with less than 30 patients in the whole world. The advent of affordable genomic sequencing has identified millions of n-of-1 patients, which is becoming a large and growing population with desperate needs.

Though a great progress is made in identifying n-of-1 patients, and ruling the genetic causes of their diseases; usually, drugs that work in patients with the common mutations, often do not work for these unique patients.

n-Lorem is a foundation created by Dr. Stanley Crooke, the founder, chairman and chief executive officer of Ionis Pharmaceuticals, a global leader in RNA-targeted therapy. This foundation was created to provide individualized treatments for patients with ultra-rare diseases using the technology developed at Ionis Pharmaceuticals.

The mission of n-Lorem is to use the versatility and specificity of antisense technology to kindly offer experimental antisense oligonucleotides (ASO) medicines to treat the n-of-1 patient. 

Antisense oligonucleotides (ASOs) are short, synthetic, single-stranded DNA-mimics that can alter the RNA, and consequently protein expression and function. Because they can manipulate the intermediate step between gene and protein translation – at the pre-mRNA level – ASOs can reduce, or restore, or modify protein expression by different mechanisms.

Very simply: DNA gets converted into mRNAASOs function in between the two. As such, if the DNA gene has a mutation and codes a dysfunctional mRNA, and consequentially a dysfunctional protein that causes a disease, an ASO can change that. The ASO has the correct complementary code to produce the precise mRNA, and automatically, the precise protein needed to perform the right function. By intervening in the step before protein gets translated, it makes sure that nothing goes wrong and that the mutated gene doesn’t go any further, preventing disease from happening.

Even though it only started one year ago, n-Lorem together with  Ionis Pharmaceuticals  have helped design and provide experimental ASOs for two unique patients: one with Batten’s disease and ataxia-telangiectasia (AT); the other one, with a FUS mutation in Amyotrophic Lateral Sclerosis (ALS). These have provided a tremendous opportunity to certify the n-Lorem concept and drive motivation forward.

Anyone can apply to n-Lorem for a potential treatment. The proposals are approved and prioritized based on certain criteria, such as the severity of the disease, feasibility of developing an ASO treatment for the genetic cause of the disease, degree of potential benefit vs. potential risks, practicality of treatment, availability of physician and institution to treat patient, and other intricacies of the condition. 

The unique patient needs to work with a physician that makes the connection to n-Lorem, who will then make an informed decision about whether a patient is appropriate to receive an experimental ASO treatment through a Commission.

It’s outstanding that the FDA reaction to n-Lorem has been very supportive; and, in fact, initial guidance has been put in place in January 2021 to reach more patients in need. 

Once regulatory permission has been given, an investigator-led clinical trial is initiated and the patient can receive their custom experimental ASO treatment at no personal cost and will all clinical support.

This cost-free individualized therapy is possible for Ionis Pharmaceuticals because of the inherent efficiency and versatility of the ASO technology. The knowledge of modern ASOs mechanisms and specific possible effectiveness in selected organs, with different possible routes of application, together with integrated safety databases, allows a dive for the treatment of unique patients. 

It’s honourable to use science to help the n-of-1 patient and their families. 

I hope for more Dr. Stanley Crooke’s…

Yogurt as precision medicine, or how your gut might be undermining your health

The gut microbiome is a community of microorganisms that lives in our gastrointestinal tract. It is so far, the most studied microbial community in healthy humans, because of its known role in a range of functions and diseases, like Inflammatory Bowel Disease (IBD)1,2.

To gain perspective on the magnitude of the bacterial presence inside of us, and potential effects on our bodies, the human body expresses 20,000 eukaryotic genes while the gut microbiome expresses 3.3 million prokaryotic genes. This suggests that the genetic contribution of the microbiome to humans may be many hundreds of times greater than the genetic contribution from the human genome.

Most of the microbes in the microbiome do not cause disease. In fact, we need them to perform many important functions that we cannot do ourselves. Microbes digest food to generate nutrients for host cells, synthesize vitamins, help to absorb nutrients and minerals, produce short-chain fatty acids, metabolize drugs, detoxify carcinogens, stimulate renewal of cells in the gut lining, and activate and support the immune system1

The fermentation by-products acetate, propionate, and butyrate are important for gut health; and, provide energy for epithelial cells, enhance the integrity of the epithelial barrier, and provide immunomodulation and protection against pathogens1

Current investigations explore resident bacterial gene function, and the potential role it might have in human health and metabolism. Each individual has its own microbiome, and no one common microbe is present in all body sites or all individuals. 

Researchers identified the composition of different individual microbiomes, but they also identified the metabolic pathways of the microbial communities found in different body sites (e.g., skin, colon, liver…).  What is interesting is that microbial membership diverges greatly between healthy individuals; but, the metabolic pathways of our own microbiomes is very similar, with common ‘housekeeping’ properties that maintain cell function and a functional body site ecosystem3,4.

The interactions between the gut microbiota and our bodies immune system begins at birth4. The microbiota shapes the development of the immune system; and, in turn, the immune system shapes the composition of the microbiota. This cross-talk between the microbes and our bodies is transmitted through a vast array of signaling pathways that involve many different classes of molecules, and extend upon multiple organs such as the gut, liver, muscle, and the brain. This creates axes of metabolic pathways, or highways of chemical communication, between the gut and the different organs in our bodies.

Because the gut microbiome is highly malleable, it can be altered throughout our lifespan by environmental factors, such as diet, stress and medication. What we have seen during the last 60 years, is an increaseincidence of gut dysbiosis, which is an imbalance in the intestinal bacteria that leads to disease.

As such, there is much interest in developing new therapeutic tools for manipulating the composition of the gut microbiota to benefit our health. A better understanding of how variations in this symbiotic relation within us, supraorganisms, will contribute to disease risk and health sustainability; and, will point the way to new therapeutic interventions and disease prevention strategies.

Danone, a leading yogurt multinational food corporation, is developing “precision probiotics”, for example. Researchers at Danone aim to tailor probiotics to an individual’s diet, phenotype, lifestyle, age, gender, genetics and microbiome. The intention it’s to bring to the gut activities or functions that are not provided by our own gut microbiome, or our own genes.

It’s funny that around 1920’s, Isaac Carasso, the creator of Danone, first started selling yogurt in pharmacies, using ferments isolated from the Institute Pasteur, and label it as health-food. It’s like going full circle.

References:

1          Bordigoni, A., Halary, S. & Desnues, C. in Encyclopedia of Virology (Fourth Edition) Vol. https://www.sciencedirect.com/topics/medicine-and-dentistry/gut-microbiome  (eds Dennis H. Bamford & Mark Zuckerman)  552-558 (Academic Press, 2021).

2          Lloyd-Price, J. et al. Multi-omics of the gut microbial ecosystem in inflammatory bowel diseases. Nature 569, 655-662, doi:10.1038/s41586-019-1237-9 (2019).

3          Visconti, A. et al. Interplay between the human gut microbiome and host metabolism. Nature Communications10, 4505, doi:10.1038/s41467-019-12476-z (2019).

4          Nicholson, J. K. et al. Host-Gut Microbiota Metabolic Interactions. Science 336, 1262-1267, doi:10.1126/science.1223813 (2012).

SARS-CoV-2 viral evolution

It’s funny that this pandemic can prove all anti-evolutionists wrong. 

Nothing like seeing Charles Darwin natural selection right in front of your eyes at the speed of light. Just look at the SARS-CoV-2 viral evolution…

In his book “On the origin of species” written in 1859, Charles Darwin defined natural selection as the “principle by which each slight variation of a trait, if useful, is preserved”. What does this mean (?), it means the individuals best adapted to their environments are more likely to survive and reproduce. 

What we are seeing now, is that the mutations of SARS-CoV-2 that better promote spreading, are the ones that are becoming more common among the population, even when derived in different locations. The virus is changing and evolving to spread more rapidly, because natural selection will optimize the level of virulence that maximizes pathogen fitness – expressed as the basic reproductive number (R0)1,2

On average, comparative data from previous studies tell us that, low-virulence infections have a greater chance of successfully establishing transmission cycles in humans than virus with higher mortality3. As such, as before, the virus actually just wants to spread and not kill.

But, since the environment also affects transmissibility, there are more factors on the equation “when will this madness end” than we would have wished for.

For example, in the evolutionary trade-off between virulence and transmissibility, because intra-host virus replication is needed to allow inter-host transmission, it is almost impossible for natural selection to optimize all traits simultaneously1 and give us some peace. 

For example, in the case of the Myxoma virus (MYXV) in rabbits, this evolutionary trade-off leads to an ‘intermediate’ virulence being more advantageous to the virus than a higher virulence1,4. This happens because the rabbit host dies before inter-host transmission, in the case of higher virulence; and, with lower virulence the virus goes absolutely nowhere, because it does not increase virus transmission rates. A similar trade-off model has been proposed to explain the evolution of HIV virulence1,5.

Unfortunately, experimental studies in some viruses have shown that high virulence can promote certain advantages, as in the case of malaria, where a higher virulence was shown to provide the Plasmodium parasites with a competitive advantage within hosts1,6. Or, in the case of the rabbit haemorrhagic disease virus (RHDV), where there is evidence that virulence has increased through time, probably because virus transmission often occurs through flies that feed on animal carcasses, making host death selectively favourable1,7.

Let’s thank the Gods that SARS-CoV-2 is NOT transmissible through flies.

So, current evolutionary theory tells us that it is possible to anticipate the direction of virulence evolution, if the key relationship between virulence and transmissibility, and hence viral fitness, is understood1. Crucial to this is the analysis of the intersection between genomics and evolutionary studies, what is called phylogenomics.

This field of science provides a way to understand virulence evolution, and creates a number of hypotheses that can be tested using appropriate experimental cell assays and bioinformatic tools8,9

The collaboration of public health and research teams worldwide has now allowed the publication of 620,338 SARS-CoV-2 genomes in GISAID (http://www.gisaid.org/) (as of February 25, 2020)9. At the same time, a dynamic nomenclature system for SARS-CoV-2 has been described to facilitate real-time epidemiology revealing links between global outbreaks that share similar viral genomes10. At the root of the phylogeny are two lineages, A and B; where, A is likely ancestral, as it shares two distinguishing variants with the closest known bat viruses. Further linage designations link new variants to geographically distinct populations, B.1 in the Italian outbreak, then other parts of Europe and the world; and, B.1.1 being the major European lineage which was spread throughout the world. However, many of the major lineages are now present in most countries, and recapitulate the global diversity of SARS-CoV-2, indicating that most local epidemics were seeded by a large number of independent introductions of the virus.

The current evolutionary tree of SARS-CoV-2 shows multiple introductions of different variants across the globe, with introductions from distant locations seeding local epidemics, where infections sometimes went unrecognized for several weeks and allowed wider spread11. The tree topology actually indicates that SARS-CoV-2 viruses have not diverged significantly since the beginning of the pandemic11. These results show that, so far, SARS-CoV-2 has evolved through a non-deterministic, noisy process; and, that random genetic drift has played the dominant role in disseminating unique mutations throughout the world11.

There remains an urgent need for a SARS-CoV-2 vaccine as a primary countermeasure to contain and mitigate the spread; and, the virus’s surface S (Spike) protein continues to be an attractive vaccine target,because it plays a key role in mediating virus entry into the cells, and is known to be immunogenic.

Of course, the virus was only recently identified in the human population with a short time frame relative to the adaptive processes that can take years to occur.

But, the most recent findings show us that the SARS-CoV-2 viruses that are currently circulating, constitute a homogeneous viral population, to which the current vaccines available will be sufficient to mitigate the spread. 

Soon, SARS-CoV-2 will become just another viral acquaintance during the winter, like a common cold

Tree

References:

1          Geoghegan, J. L. & Holmes, E. C. The phylogenomics of evolving virus virulence. Nature Reviews Genetics 19, 756-769, doi:10.1038/s41576-018-0055-5 (2018).

2          Bull, J. J. & Lauring, A. S. Theory and empiricism in virulence evolution. PLoS Pathog 10, e1004387, doi:10.1371/journal.ppat.1004387 (2014).

3          Geoghegan, J. L., Senior, A. M., Di Giallonardo, F. & Holmes, E. C. Virological factors that increase the transmissibility of emerging human viruses. Proc Natl Acad Sci U S A 113, 4170-4175, doi:10.1073/pnas.1521582113 (2016).

4          Kerr, P. J. et al. Next step in the ongoing arms race between myxoma virus and wild rabbits in Australia is a novel disease phenotype. Proceedings of the National Academy of Sciences 114, 9397-9402, doi:10.1073/pnas.1710336114 (2017).

5          Fraser, C., Hollingsworth, T. D., Chapman, R., de Wolf, F. & Hanage, W. P. Variation in HIV-1 set-point viral load: epidemiological analysis and an evolutionary hypothesis. Proc Natl Acad Sci U S A 104, 17441-17446, doi:10.1073/pnas.0708559104 (2007).

6          de Roode, J. C. et al. Virulence and competitive ability in genetically diverse malaria infections. Proc Natl Acad Sci U S A 102, 7624-7628, doi:10.1073/pnas.0500078102 (2005).

7          Di Giallonardo, F. & Holmes, E. C. Viral biocontrol: grand experiments in disease emergence and evolution. Trends Microbiol 23, 83-90, doi:10.1016/j.tim.2014.10.004 (2015).

8          Stern, A. et al. The Evolutionary Pathway to Virulence of an RNA Virus. Cell 169, 35-46.e19, doi:10.1016/j.cell.2017.03.013 (2017).

9          Sjaarda, C. P. et al. Phylogenomics reveals viral sources, transmission, and potential superinfection in early-stage COVID-19 patients in Ontario, Canada. Scientific Reports 11, 3697, doi:10.1038/s41598-021-83355-1 (2021).

10        da Silva Filipe, A. et al. Genomic epidemiology reveals multiple introductions of SARS-CoV-2 from mainland Europe into Scotland. Nat Microbiol 6, 112-122, doi:10.1038/s41564-020-00838-z (2021).

11        Dearlove, B. et al. A SARS-CoV-2 vaccine candidate would likely match all currently circulating strains. bioRxiv, 2020.2004.2027.064774, doi:10.1101/2020.04.27.064774 (2020).

Mutations

RNA Viruses, such as the SARS-CoV-2HIV and Influenza, tend to pick up mutations rather quickly, once they are copied inside the cells of our bodies. This happens because the little cell workers that copy the RNA (called enzymes) are sloppy workers and prone to make errors. 

The SARS-CoV-2 virus genetic code has just 30,000 nucleotides blocks of RNA, or letters that can spell at least 29 genes1; and, the most common mutations are single-nucleotide changes between viruses from different people, that have little effect on the overall performance of the virus infection rate, but that allow researchers to track the spread by linking closely-related viruses2

In fact, sequencing data actually suggests that coronaviruses change more slowly than most other RNA viruses, because they have “proofreading” mechanisms that correct potentially fatal copying mistakes, accumulating only two single-letter mutations per month in its genome — a rate of change about half that of Influenza and one-quarter that of HIV2.

The problem is, that scientists can spot mutations faster than they can make sense of them, or what problems they may cause. Many mutations will have no consequence for the virus’s ability to spread or cause disease, because they do not alter the shape of a protein; whereas those mutations that do change proteins are more likely to harm the virus than improve it2. For example, in the beginning of the pandemic in Singapore, the ∆382 deletion made the infection of the virus milder3. On the contrary, the G614 variant showed a fitness advantage of infection, where individuals had a higher concentration of pseudotyped virions, suggestive of higher upper respiratory tract viral loads, but not with increased disease severity4

If we think about it, the virus just wants to spread, but not actually kill – because, if it kills, it can no longer spread.

More recently, a new SARS-CoV-2 virus variant showed up in the UK, where multiple spike protein mutations are seen (deletion 69-70, deletion 144, N501Y, A570D, D614G, P681H, T716I, S982A, D1118H)5. Changes are also seen in other genomic regions, inclusively in the receptor binding domain (N501Y, “Nelly”). 

The unusually high number of spike protein mutations suggests that the variant has not emerged through gradual accumulation of mutations6. Instead, one possible explanation for the emergence of the variant, is prolonged SARS-CoV-2 infection in a single patient, potentially with reduced immunocompetence, similar to what has previously been described7,8. Such prolonged infection in immunocompromised patients can lead to accumulation of immune-escape mutations at a higher rate. 

This explanation is also suggested to the current SARS-CoV-2 virus variant found in Brazil (P.1)9, and in South Africa (501Y.V2)10

Unfortunately, this shows that the emergence of successful variants with similar properties is not so rare6; and, just like the need to develop new influenza vaccines every season, that also might be the case for SARS-CoV-2. The persistence of the pandemic, may enable accumulation of immunologically relevant mutations in the population, even as vaccines are developed. 

But, because science tries to be one step ahead, this is exactly what manufacturers are already working on, specifically the ones using mRNA technology that can quickly adapt their platforms to the current mutations seen.

Mutation luck
Mutation of luck

References:

1          Naqvi, A. A. T. et al. Insights into SARS-CoV-2 genome, structure, evolution, pathogenesis and therapies: Structural genomics approach. Biochim Biophys Acta Mol Basis Dis 1866, 165878-165878, doi:10.1016/j.bbadis.2020.165878 (2020).

2          Callaway, E. The coronavirus is mutating — does it matter? Nature 585, 174-177, doi:https://doi.org/10.1038/d41586-020-02544-6 (2020).

3          Young, B. E. et al. Effects of a major deletion in the SARS-CoV-2 genome on the severity of infection and the inflammatory response: an observational cohort study. The Lancet 396, 603-611, doi:10.1016/S0140-6736(20)31757-8 (2020).

4          Korber, B. et al. Tracking Changes in SARS-CoV-2 Spike: Evidence that D614G Increases Infectivity of the COVID-19 Virus. Cell 182, 812-827.e819, doi:10.1016/j.cell.2020.06.043 (2020).

5          Andrew Rambaut, N. L., Oliver Pybus, Wendy Barclay4, Jeff Barrett5, Alesandro Carabelli6, et al. Preliminary genomic characterisation of an emergent SARS-CoV-2 lineage in the UK defined by a novel set of spike mutations: COVID-19 genomics UK consortium. https://virological.org/t/preliminary-genomic-characterisation-of-an-emergent-sars-cov-2-lineage-in-the-uk-defined-by-a-novel-set-of-spike-mutations/563 December 2020 (2020).

6          ECDC. Rapid increase of a SARS-CoV-2 variant with multiple spike protein mutations observed in the United Kingdom. https://www.ecdc.europa.eu/sites/default/files/documents/SARS-CoV-2-variant-multiple-spike-protein-mutations-United-Kingdom.pdf December 2020 (2020).

7          Choi, B. et al. Persistence and Evolution of SARS-CoV-2 in an Immunocompromised Host. N Engl J Med 383, 2291-2293, doi:10.1056/NEJMc2031364 (2020).

8          McCarthy, K. R. et al. Natural deletions in the SARS-CoV-2 spike glycoprotein drive antibody escape. bioRxiv, 2020.2011.2019.389916, doi:10.1101/2020.11.19.389916 (2020).

9          Kupferschmidt, K. New mutations raise specter of ‘immune escape’. Science 371, 329-330, doi:10.1126/science.371.6527.329 (2021).

10        Karim, S. S. A. The 2nd Covid-19 wave in South Africa. https://www.scribd.com/document/488618010/Full-Presentation-by-SSAK-18-Dec December 2020 (2020).

Moderna mRNA COVID-19 vaccine: how did they do it?

Moderna uses an efficient method to make large quantities of individual mRNAs with high purity, based on a technique developed in 1984 by D. Melton and colleagues at Harvard University and published in Nucleic Acids Research. In here bacteriophage polymerases were used to transcribe plasmid DNA and make purified RNAs. D. Melton went further and showed that he could transcribe a synthetic mRNA injected into frog oocytes, and get expression of b-globin (Krieg & Melton, Nucleic Acids Research, 1984). With this report, the protocol to make pure mRNAs was settled.

Today, at Moderna, they moved on from this idea to a GMP drug-product inside of a vial in under two months. In the case of the COVID-19 vaccine, they went from a sequence of the virus to having the material ready for a Phase I clinical trial in 45 days. 

This automated process starts with back-translation using Moderna’s proprietary computer algorithm, that has been defined over the years to pick the best mRNA sequence for the target in question. 

Then, the therapeutic mRNA is engineered to avoid the innate immune sensors that defend against RNA viruses and might destroy the vaccine. These defences come in to main types: Toll-like receptors (TLR) in the endoplasmic reticulum, and RIG-I/MDA-5-like receptors in the cytoplasm. 

To avoid TLRs, Moderna places modified nucleotides. This technique is based on a paper by Diebold and colleagues published in Science (2004), where the researchers took macrophages from mice and incubated them with different polymers (polyA, polyC, polyG, polyI, polyU), then checking for an IFN-alpha response. What they have seen was that the only polymer that created the IFN-alpha response was the one that contain Uridine (polyU), which seems to be the only nucleotide that is being recognized by the TLR-driven innate immune response. As such, at Moderna, mRNAs are engineered to replace all U’s with N1-methyl-pseudiuridine without affecting base-pairing, but avoiding TLR recognition. N1-methyl-pseudiuridine is a naturally occurring nucleotide that our bodies recognize as native.

Another problem though, is avoiding the creation of double-stranded RNA (dsRNA) to escape the RIG-I/MDA-5-like receptors. The state-of-the-art used in Moderna to avoid this trap, is HPLC purification to reduce dsRNA content. This is a technique based on Karikó & Weismann (2011, Nucleic Acids Research), that results in very little dsRNA in the end-product, and an avoidance of the innate immune response. The developed technique at Moderna has recently been published in Science Advances (June 2020), where Moderna scientists describe a highly sensitive assay to detect dsRNA and purify therapeutic mRNAs.

(It seems Moderna scientists are now going even further, and have reengineer T7 RNA polymerase not to produce dsRNA at all – although this has not been published yet)

The third step to make a good mRNA-drug, and a successful vaccine, is to find an efficient delivery method.  With that in mind, Moderna researchers looked back at work done by Wolff and colleagues in the 90s (Science, 1990, vol.247, 1465-1468), where they were able to directly inject RNA in the mouse skeletal mouse and have protein expression, with no special delivery system involved. 

In 2014, researchers at Moderna were able to go further, and measured with a Luciferase system, the in vivo expression of biologically active proteins in a dose-dependent manner, by injecting mice with Moderna’s naked mRNA. Nowadays, Moderna targets different tissues via multiple Routes of Administration with specific delivery vehicles (ROAs: direct injection in the heart or tumours, subcutaneous, intravenous, intramuscular). 

Most ROAs require mRNA encapsulation with Lipid nanoparticles (LNPs, 80-100nm). Each encased particle contains 2-6 molecules of mRNA, phospholipid cholesterol, a PEG lipid that keeps the lipid nanoparticles stable avoiding aggregation, and an ionizable lipid that at low pH interacts with the mRNA. These mRNA-LNPs are akin to endogenous lipid transport complexes, slightly bigger than Very-Low Density Lipoproteins (VLDLs), and seen as “friendly bubbly characters” by our bodies.

At Moderna, they empower a rational-structure LNP design by analysing and engineering each individual step of the component mixture, to enhance chemical/physical stability of mRNA-LNPs to allow an optimal biodistribution, cellular uptake, endosomal escape and protein expression. In comparison to the competitor LNPs in the field, which have a 1-2% delivery rate, Moderna’s LNPs can deliver 30% mRNA into cells. To date, Moderna has published two peer-revied articles describing these efforts and their applications in different ROAs (Sabis … Benenato, Mol Ther, 2018Hassett … Britto, Mol Ther Nuc Acids, 2019). 

Finally, there needs to be the right knowledge to engineer the best mRNA sequence for a particular purpose in order to make a good mRNA-drug or vaccine. 

So, there needs to be translation initiation fidelity, so that it always starts in the right place and there’s faithful decoding; and, also, the ribosome needs to stop in the right place. 

The mRNA needs to have a functional half-life, to function before it gets destroyed. 

Also, the therapeutics or vaccine needs to hit the correct cell type, which is achieved by putting “off-logic gates”, like microRNAs target sites in the 3’prime UTR, that cause the mRNA to be degraded in case it hits an undesired cell type.

At Moderna, they have all steps in place for a rapid development of mRNA as medicines:

  1. Efficient methods to make large quantities of individual mRNAs at high purity;
  2. Ability to avoid the innate immune sensors that defend against RNA viruses;
  3. Efficient delivery methods,
  4. Knowledge of how to engineer the best mRNA sequence for a particular purpose.

Besides proprietary algorithm to define the mRNA sequence and unique LNP design; one of the big differences between BioNTech/Pfizer vaccine and Moderna, is that Moderna does not use self-amplifying RNA in their vaccines. According to Dr Melissa Moore, Chief Scientific Officer at Moderna Therapeutics Inc., self-amplifying RNA first starts by building dsRNA which pushes-up the immune response against the vaccine, as such Moderna hasn’t gone down that road to avoid such road-blocks.

The important take-out message is not which vaccine we take.

With a mRNA vaccine, the cell is doing the protein itself, and the antigen-presenting cells are exhibiting it on their surface, which causes an activation of B and T cells.

This protects us and others from developing this devastating disease.

COVID-19 mRNA vaccine, the BNT162b2 candidate

The principle of mRNA therapeutics is to introduce therapeutic messenger (m) RNAs encoding the genetic information for a protein, into a cell of interest. The mRNA structure is designed to increase half-life, translation and protein functionality. 

The mRNA synthesis is made by in vitro transcription using a linear DNA template, which provides more than 500 copies of mRNA per template. They promote a transient expression of the encoded protein/antigen, and are degraded into nucleotides, without the formation of toxic metabolites. Since mRNA is highly sensitive, it gets degraded after a short-time, with no risk of genomic integration. 

This one process can be used to manufacture essentially any mRNA sequence. 

The raw reaction mixture has mRNA and all types of impurities, both process-related (T7 RNA polymerase, remaining building blocks, hydrolyzed DNA…), and product-related impurities (break-off transcripts, side products…), that need to be further purified with high affinity chromatographic methods.

Once purified RNA is obtained, the therapeutic is ready to deliver to the patient.

BioNTech together with their partner Pfizer and FosunPharma, managed to do all this in a record time of 84 days to develop a COVID-19 vaccine. 

Their scientists designed multiple antigen variants using the SARS-CoV-2 Spike (S) protein.

Next, they ran preclinical and toxicology evaluation tests in vitro and in vivo (e.g., in vitro expression data, antibody titers in animal models, pseudo-virus neutralization (pVN) assay in animal models), so they could discover the most active antigen and bring it into the clinic. Also, using their Good Manufacturing Practice (GMP) facilities they produced small scale batches for fast entry into the clinic to demonstrate safety, tolerability (i.e., low reactogenicity), and immunogenicity. 

Afterwards, they initiated clinical trials, where not one but four vaccine candidates were simultaneously studied, in order identify the safest and most effective candidate for further development. In parallel, there was already preparation of larger manufacturing batches of the candidate with the best output in the clinical studies; and, the identification of collaboration partners to develop and provide the vaccine worldwide (Pfizer, FosunPharma).

BioNTech and Pfizer studied three mRNA types during all Phase I/II studies, to evaluate safety and efficacy. The basis for such studies was that different types of mRNA vaccines lead to different responses. 

As such, vaccine prototype (1) was a Uridine mRNA (uRNA) with strong intrinsic adjuvant effect, strong antibody response, that stimulates the production of more CD8+T cells then CD4+T cells.

Vaccine prototype (2) was a Nucleoside-modified mRNA (modRNA), with a moderate intrinsic adjuvant effect, very strong antibody response, lower cytokine induction, that stimulates more CD4+T cells then CD8+T cells.

In the case of vaccine prototype (3), this was a Self-amplifying mRNA (saRNA) with long duration, and a higher likelihood for good efficacy antibody response with lower dosage. 

Early and constant interaction with the regulatory agencies (e.g.EMA) has allowed that BNT162b2 vaccine candidate raced to the finish line, being now the leading candidate from BioNTech & Pfizer; and, currently in review for conditional marketing authorization approval.

It is outstanding that if a new variant of the virus is required (e.g., due to a mutated virus sequence), a new GMP batch of a possible vaccine could be available within half of the time (around 42 days).

If there is a positive message out of these dark days, is that Science is there to save us from our doom. 

Let’s embrace Science.

mRNA vaccine

mRNA: the therapeutics of the future! (or, 2021 the way research is going…)

Today’s top selling drugs are mostly biologics, which means proteins (e.g., monoclonal antibodies) being used as medicine. The global therapeutic monoclonal antibody market was valued at approximately US$115.2 billion in 2018, and is expected to generate revenue of $150 billion by the end of 2019, and $300 billion by 20251. Thus, the market for therapeutic antibody drugs has experienced an explosive growth with new drugs being approved for treating various human diseases, including many cancers, autoimmune, metabolic and infectious diseases, which have increasingly fewer adverse effects due to their high specificity. 

But, these types of treatments carry their own limitations. Besides of a long period of development, they can only access the extracellular space, the serum. Yet, ~2/3 of the human proteome are intracellular or transmembrane proteins; which means that biologics cannot treat disorders that are caused by these types of proteins. 

As such, an alternative mechanism to make these proteins is needed in order to go further in the advancement of therapeutics. 

One such mechanism, is to supply the mRNA that encodes that protein. As such, any protein can become a drug. And, since only the coding region varies from mRNA-drug to mRNA-drug; once the delivery vehicle problem is resolved (e.g., using lipid nanoparticles), the development of new mRNA drugs should be quite fast in comparison with other types of medicine.

The other positive aspect of mRNA as therapeutics, is that it can be used in many different types of modalities: prophylactic vaccines, cancer vaccines, intertumoral immune-oncologicals, localized regenerative therapeutics, systemic secreted medicine, and cell surface therapeutics…

Another positive aspect of mRNA-drugs is that several mRNAs can be delivered at once, like in the case of prophylactic vaccines (e.g., Moderna Therapeutics Cytomegalovirus (CMV) mRNA vaccine delivers 6 different mRNAs to encode a multiprotein complex). 

Or, another possibility, is the personalization of cancer vaccines, where different patient-specific neoepitopes are sequenced, and mRNA is created that encodes those 20-35 specific tumour-neoepitopes. 

Those mRNAs can also encode cytokines, that are able to boost the immune system to attack a tumour, like intertumoral immune-oncologicals therapeutics. 

In the field of localized regenerative therapeutics, there is currently a project between Moderna Therapeuticsand AstraZeneca in Phase II clinical trials, where Vascular Endothelial Growth Factor-A (VEGFA) mRNA is injected NAKED, without lipid nanoparticles, directly into the heart muscle of patients with a recent Myocardial Infarction (MI) to help rebuild blood vessels. 

Of course, many challenges still exist. 

mRNA needs to be rightly sequenced and be made at high purity. It also needs to have the ability to avoid the innate immune sensors, like Toll-like receptors (TLR) in the endoplasmic reticulum, and RIG-I/MDA-5-like receptors in the cytoplasm. What researchers do to avoid the first ones (TLRs) is to use a Pseudouridine, which looks like a Uridine and still base-pairs, but escapes TLR recognition. To avoid the RIG-I/MDA-5-like receptors, researchers need to highly purify the therapeutic mRNA, so that no double-stranded RNA exists (or, reengineer T7 RNA polymerase not to produce dsRNA at all).

The next step on making a good mRNA-drug is to find an efficient delivery method. For that, most therapeutics will need some sort of mRNA encapsulation with Lipid nanoparticles, which are akin to endogenous lipid transport complexes, similar to Very-Low Density Lipoproteins (VLDLs).

Finally, in order to make a good mRNA-drug, there needs to be knowledge on how to engineer the best mRNA sequence for a particular purpose. As such, there needs to be translation initiation fidelity, so that it always starts in the right place and there’s faithful decoding; and, also, the ribosome needs to stop in the right place. There needs to be high translation efficiency, a functional mRNA half-life, and hit the correct cell type, by putting off-logic gates, like microRNAs target sites in the 3’prime UTR and causing the mRNA to be degraded in case it hits an undesired cell type. Also, the mRNAs need to be tailored to the protein type (e.g., secreted, mitochondrial).

So, let’s see what the future brings from mRNA therapeutics…

References:

1          Lu, R.-M. et al. Development of therapeutic antibodies for the treatment of diseases. Journal of Biomedical Science 27, 1, doi:10.1186/s12929-019-0592-z (2020).

Personalized Cancer Vaccines: the future is here!

In humans, anti-tumour immunity is usually very effective, because our T-cells (a type of a white blood cell) can detect the presence of specific cancer neoantigens. These are short chains of aminoacids (peptides) that appear due to tumour-specific mutations, and mark the cancer cell as foreign. They are highly immunogenic, because they are not present in normal tissues; and therefore, evade central thymic tolerance and activate our immune system to destroy them.

Although neoantigens were long-envisioned as optimal targets for an anti-tumour immune response, their efficient discovery and evaluation only became possible recently, with the availability of massive parallel sequencing for detection of all coding mutations within tumours; and, of machine learning approaches to reliably predict those mutated peptides with high-affinity binding of autologous human leukocyte antigen (HLA) molecules. 

It has been shown that vaccination with these specific neoantigens can expand the pre-existing neoantigen-specific T-cell populations; and, induce a broader repertoire of new T-cell specificities in cancer patients. This can actually tip the intra-tumoral balance, in favour of an enhanced tumour control. 

Research studies now demonstrate the feasibility, safety, and immunogenicity of vaccines that target up to 20 predicted personal tumour neoantigens (e.g.Melanoma Neovax anti-PD11). Vaccine-induced polyfunctional CD4+ and CD8+ T-cells can target unique tumour neoantigens; and, not only that, these T-cells can have persistent memory. This because, studies from the Dana-Farber Cancer Institute and Dr. Catherine Wu’s lab, show that patients have a continuous response 5-7-years later after the initial vaccination, with a second-wave of immune response that shows epitope spreading from the initial epitope. What this means, is that the patient immune system was able to recognize and target tumour cells, even when they try to disguise themselves years later.

Researchers have gone further: at Genocea Biosciences they are developing precision neoantigen selection with their branded ATLAS platform. They can optimize the set of neoantigens for inclusion in the vaccine, by excluding inhibitory antigens (called Inhibigens) that suppress the patient’s immune system, blocking the internal growth of the tumour cells.

Neoantigen

References:

1          Ott, P. A. et al. An immunogenic personal neoantigen vaccine for patients with melanoma. Nature 547, 217-221, doi:10.1038/nature22991 (2017).

Theanine and Caffeine: the yin-yang of green tea and brain waves

Theanine was discovered in 1949 by the Japanese researcher Yajiro Sakato1, as a new amide in the water extract of the Japanese green tea Gyokuro (玉 露) – also called “precious dew” due to its dark green colour and high price in Japanese markets, because of its unique characteristic taste of sweetness and “umami”2.

The green tea leaves from specialized varieties of the tea plant Camellia sinensis (Ericales plants) have enormous amounts of theanine, which they absorb from the roots of the plant depending on the nitrogen supply of the soil3, 4. A soil that is rich in nitrogen will promote the biosynthesis of the non-protein aminoacid L-Theanine from Glutamic Acid and Ethylamine (by the enzyme theanine synthetase)2. Since the commercial price of green tea is almost directly proportional to its theanine content, to obtain theanine-rich, good quality green tea leaves, a large amount of nitrogen fertilizer must be supplied to the cultivated plants throughout the growth period (with problematic effects on the environment)2.

Theanine is then transported via the xylem fluid, from the roots to the young bushes leaves. And, because light is necessary to the conversion of theanine into cathechins in the leaves of the plant, when Camellia sinensis bushes are protected from direct sunlight for a couple of weeks just before harvest, they have a high theanineamino acid content2. Even though cathechins are polyphenols with known antioxidant properties, they are also responsible for the astringent flavour of green tea. So, for an optimum taste, cathechins must be balanced with theanines. With less sunlight, there is less photosynthesis and leaf senescence; and, less theanine being converted into catechin, keeping the unique sweet-umami flavor characteristic of Gyokuro green tea.

Theanine is also known as N5-ethyl-L-glutamine due to its structural similarities to L-glutamic acid, which is the most abundant excitatory neurotransmitter in our brains5. Researchers think that L-theanine mechanism of action might be mediated by glutamate receptors, and it might act as a partial agonist for the N-methyl-D-aspartate receptor6

Theanine has known relaxing and anxiolytic effects, via the induction of the slow alpha-brain waves in the occipital and parietal regions of the human brain7. Plus, it doesn’t have any additive or side effects that are usually associated with conventional sleep inducers. 

There is only one IF…. 

In addition to L-TheanineCamellia sinensis leaves grown in the shade also have a high level of caffeine8, which decreases slow brain activity and keeps us awake (by increasing beta-wave activity). This because, the buds and young leaves of Camellia plants contain more caffeine than mature leaves8. As such, besides a high level of theanineGyokuro or Matcha green tea powder (which goes through the same shade process before harvest), also have high levels of caffeine

What is interesting, is that this dual effect of L-Theanine and Caffeine in Gyokuro or Matcha green tea powder, seem to have a synergistic effect in decreasing mind wandering and enhancing our attention to target stimuli9, 10. This was shown in a very small randomized clinical trial, that used functional Magnetic Resonance Imaging (fMRI) to scan the brains of subjects, after they ingested L-Theanine and Caffeine supplements while performing a visual task. 

So, if we want to focus and stay awake: a cup of Gyokuro or Matcha, will keep our attention sharp as a Japanese sword. 

If, on the other hand, we are not feeling very calm, anxiety is setting in, or if sleep is taking too long because the news are only “so-so” at the moment: 200-400mg of L-theanine could help us keep the zen mood, and have a good night sleep11.

The discovery of Theanine

References:

1.         Sakato Y. Studies on the Chemical Constituents of Tea

Part III. On a New Amide <b>Theanine</b>. Nippon Nōgeikagaku Kaishi. 1950;23:262-267.

2.         Ashihara H. Occurrence, biosynthesis and metabolism of theanine (γ-glutamyl-L-ethylamide) in plants: a comprehensive review. Nat Prod Commun. 2015;10:803-10.

3.         Ruan J, Haerdter R and Gerendás J. Impact of nitrogen supply on carbon/nitrogen allocation: a case study on amino acids and catechins in green tea [Camellia sinensis (L.) O. Kuntze] plants. Plant Biol (Stuttg). 2010;12:724-34.

4.         Huang H, Yao Q, Xia E and Gao L. Metabolomics and Transcriptomics Analyses Reveal Nitrogen Influences on the Accumulation of Flavonoids and Amino Acids in Young Shoots of Tea Plant ( Camellia sinensis L.) Associated with Tea Flavor. J Agric Food Chem. 2018;66:9828-9838.

5.         Unno K, Furushima D, Hamamoto S, Iguchi K, Yamada H, Morita A, Horie H and Nakamura Y. Stress-Reducing Function of Matcha Green Tea in Animal Experiments and Clinical Trials. Nutrients. 2018;10:1468.

6.         Sebih F, Rousset M, Bellahouel S, Rolland M, de Jesus Ferreira MC, Guiramand J, Cohen-Solal C, Barbanel G, Cens T, Abouazza M, Tassou A, Gratuze M, Meusnier C, Charnet P, Vignes M and Rolland V. Characterization of l-Theanine Excitatory Actions on Hippocampal Neurons: Toward the Generation of Novel N-Methyl-d-aspartate Receptor Modulators Based on Its Backbone. ACS Chem Neurosci. 2017;8:1724-1734.

7.         Kobayashi K, Nagato Y, Aoi N, Juneja LR, Kim M, Yamamoto T and Sugimoto S. Effects of L-Theanine on the Release of &alpha;-Brain Waves in Human Volunteers. Nippon Nōgeikagaku Kaishi. 1998;72:153-157.

8.         Ashihara H and Suzuki T. Distribution and biosynthesis of caffeine in plants. Front Biosci. 2004;9:1864-76.

9.         Kahathuduwa CN, Dhanasekara CS, Chin SH, Davis T, Weerasinghe VS, Dassanayake TL and Binks M. l-Theanine and caffeine improve target-specific attention to visual stimuli by decreasing mind wandering: a human functional magnetic resonance imaging study. Nutr Res. 2018;49:67-78.

10.       Hidese S, Ogawa S, Ota M, Ishida I, Yasukawa Z, Ozeki M and Kunugi H. Effects of L-Theanine Administration on Stress-Related Symptoms and Cognitive Functions in Healthy Adults: A Randomized Controlled Trial. Nutrients. 2019;11:2362.

11.       Williams JL, Everett JM, D’Cunha NM, Sergi D, Georgousopoulou EN, Keegan RJ, McKune AJ, Mellor DD, Anstice N and Naumovski N. The Effects of Green Tea Amino Acid L-Theanine Consumption on the Ability to Manage Stress and Anxiety Levels: a Systematic Review. Plant Foods Hum Nutr. 2020;75:12-23.

Feeling anxious or depressed? Might be your microglia…

A macrophage is a hungry immune cell that engulfs and eats all things that don’t have a good reputation in our body (e.g., cellular debris, pathogens…); and, microglia cells are the resident macrophage population of the Central Nervous System (CNS)1. They function as sentinels of local infection in the brain, backing both innate and adaptive immune responses, and account for 10-15% of all cells found in the brain and spinal cord2.

Microglia cells are also involved in the maintenance of brain homeostasis, contributing to mechanisms that underly learning and memory. They constantly survey their local microenvironment – like patrols – extending their motile processes, or hands/legs, to make a brief contact with neuronal synapses. This continuous synaptic plasticity, throughout our lifetime, is essential to control maladaptive learning and memory, such as addiction3. For example, the number of synapses in the brain regions of the nucleus accumbensamygdala and dorsomedial striatum increase when we expose our brains to addictive substances (such as alcohol, or opiates); and, decrease upon withdrawal due to the action of microglia cells4. As such, microglia cells help to modify and eliminate synaptic structures when they grow too much, or, are on the way to touch too many other neurons5 – because, neurons tend to be touchy and to enjoy a synaptic orgy. 

Whenever a neuron starts to freak out that it has too many synapses and it needs help regulating its neuronal “touchy” behaviour, then the synapse extends a greeting “hand” (filopodia) and “Hi5s” the neighbouring microglia cell, telling her that it needs help remodelling. Once “Hi5ed”, the microglia cell starts nibbling on the synapse6 – cutting all the excess – and, avoiding that that specific neuron gets assigned a bad “sexual” reputation. It’s like behaviour counselling, transforming and remodelling, but neuron-wise and with a microglia cell as the counsellor…

Even though microglia cells are essential and extremely helpful; like everything in life, they can also go haywire, ending up pruning too many synapses, and destroying healthy tissue. An uncontrolled activation of the microglia can be directly toxic to neurons, because they can release inflammatory cytokines (IL-1, TNF-alpha, IL-6, Nitric Oxide, Prostaglandine E2, and Superoxide)7, and lead to excessive pruning of neuronal synapses3.

The most recent research in the pathophysiology of depression and anxiety shows that abnormalities in microglia cells have a central role in the development of these diseases8. For example, a neuroimaging study in depressed patients, revealed that stronger depressive symptoms related with microglial activation in brain regions associated with mood regulation (the prefrontalanterior cingulate, and insular cortices of the brain)9. Additionally, post-mortem studies of depressed suicide victims showed microglial activation and macrophage accumulation within the anterior cingulate cortex brain region10

Persistent stress activates a chronic low-inflammatory state in our bodies that enhances our inflammatory response to challenges11. Social stress causes the release of inflammatory monocytes into the circulation8, which end up reaching the Blood Brain Barrier (BBB) and its endothelial cells. This low-systemic inflammation that travels through our vessels, encourages the migration of the brain resident microglia cells to the area of the cerebral vessels. In here, microglia cells make physical contact with endothelial cells of the BBB, and “sense” the inflammatory environment that is present in the blood (aka, inflammatory cytokines activate receptors in the microglia cells). If there is sustained inflammation, then some of the microglia cells can “become neurotic” and start nibbling the end-feet of healthy cells, making the BBB more permeable and, consequently, damaging the protective BBB shield function12. This is turn, leaks inflammatory cytokines from the blood into the brain tissue, further activating more microglia cells, that start cutting synapses from healthy neurons.

What this means is that a persistent low-grade inflammation can trigger microglia activation and change the functional connectivity of healthy neurons in major brain emotional centers13. Because our immune system can interact with the neurocircuitry that is involved in emotion regulation and behaviour, a chronic low-inflammation derived from stress can influence the development of various neuropsychiatric disorders, like depression and anxiety. 

But, what can we do to avoid falling in this trap?

Eat well, sleep well, do sports and have a good laugh with friends. All things that inhibit inflammation, and make us feel good. 

Microglia cell (green) “counselling” a synapse

References:

1.         Ginhoux F, Lim S, Hoeffel G, Low D, Huber T. Origin and differentiation of microglia. Frontiers in Cellular Neuroscience. 2013;7

2.         Lawson LJ, Perry VH, Gordon S. Turnover of resident microglia in the normal adult mouse brain. Neuroscience. 1992;48:405-415

3.         Neniskyte U, Gross CT. Errant gardeners: Glial-cell-dependent synaptic pruning and neurodevelopmental disorders. Nat Rev Neurosci. 2017;18:658-670

4.         Spiga S, Talani G, Mulas G, Licheri V, Fois GR, Muggironi G, et al. Hampered long-term depression and thin spine loss in the nucleus accumbens of ethanol-dependent rats. Proc Natl Acad Sci U S A. 2014;111:E3745-3754

5.         Tremblay M-È, Lowery RL, Majewska AK. Microglial interactions with synapses are modulated by visual experience. PLOS Biology. 2010;8:e1000527

6.         Weinhard L, di Bartolomei G, Bolasco G, Machado P, Schieber NL, Neniskyte U, et al. Microglia remodel synapses by presynaptic trogocytosis and spine head filopodia induction. Nature Communications. 2018;9:1228

7.         Kim YS, Joh TH. Microglia, major player in the brain inflammation: Their roles in the pathogenesis of parkinson’s disease. Exp Mol Med. 2006;38:333-347

8.         McKim DB, Weber MD, Niraula A, Sawicki CM, Liu X, Jarrett BL, et al. Microglial recruitment of il-1β-producing monocytes to brain endothelium causes stress-induced anxiety. Mol Psychiatry. 2018;23:1421-1431

9.         Setiawan E, Wilson AA, Mizrahi R, Rusjan PM, Miler L, Rajkowska G, et al. Role of translocator protein density, a marker of neuroinflammation, in the brain during major depressive episodes. JAMA Psychiatry. 2015;72:268-275

10.       Suzuki H, Ohgidani M, Kuwano N, Chrétien F, Lorin de la Grandmaison G, Onaya M, et al. Suicide and microglia: Recent findings and future perspectives based on human studies. Frontiers in cellular neuroscience. 2019;13:31-31

11.       Miller GE, Rohleder N, Cole SW. Chronic interpersonal stress predicts activation of pro- and anti-inflammatory signaling pathways 6 months later. Psychosom Med. 2009;71:57-62

12.       Haruwaka K, Ikegami A, Tachibana Y, Ohno N, Konishi H, Hashimoto A, et al. Dual microglia effects on blood brain barrier permeability induced by systemic inflammation. Nature communications. 2019;10:5816-5816

13.       Kim J, Yoon S, Lee S, Hong H, Ha E, Joo Y, et al. A double-hit of stress and low-grade inflammation on functional brain network mediates posttraumatic stress symptoms. Nature Communications. 2020;11:1898

Clogged Synapses: better call the mailman (or have a shut eye)

Sleep is fundamental for our brain.

Our ability to learn and memorize new things profits from sleep; and, sleep loss leads to cognitive impairment that can only be reversed by closing our eyes and sleeping1. The more time we spend awake, and the further we engage with learning activities, the more our brains will demand for sleep. 

The synapse is the structure that allows the neuron (or nerve cell) to pass an electrical or chemical signal to another neuron, or to the end effector cell that produces the action demanded from our brain. Synapses are the foundation of neuronal plasticity, and, in the adult brain, synapses can change their strength and size within minutes or hours in response to a new experience and learning1. Recent research has shown that the need for sleep and synaptic function are strongly linked together.

Sarah B. Noya and her colleagues2 from the Institute of Pharmacology and Toxicology of the University of Zürich (Switzerland) have recently shown that 70% of the synaptic transcripts change during our 24h circadian cycles. The transcripts and proteins related to synaptic signaling, accumulate before the active phase of the bodies and get further cleared out during the day.  In the meantime, proteins that are associated with the body metabolism and translation, accumulate in the synapses just before the resting phase or sleeping time. As such, just before we go to bed, the synapses get congested with protein information from our bodies daily function, that needs to be compartmentalized and processed.

We can imagine the synapses as a clerk’s room filling up with boxes and parcels that need to be deliver to the proper address.

But what is interesting, is the result that comes from another study published at the same time, from Franziska Brüning and her team3 at the Institute of Medical Psychology of the Ludwig Maximilian University of Munich (Germany). This research study shows that sleep deprivation abolishes nearly all of the compartmentalization of these accumulating proteins at the synapses (98%); which means that, without a proper shut eye, the synapses get completely clogged with accumulating “protein-parcels” that don’t get removed. When a chemical or electrical information wants to get through the synapses the next day, it can’t because there’s accumulating protein transcripts that haven’t been properly processed, or phosphorylated. The information gets stalled, due to the congestion at the synapses.

So, next time your brain feels fizzle in the morning, and throughout the day; promise yourself (and your brain) to go to bed early, and have a proper night’s rest!

Compartmentalization!

References:

1.         Cirelli C and Tononi G. Linking the need to sleep with synaptic function. Science. 2019;366:189-190.

2.         Noya SB, Colameo D, Bruning F, Spinnler A, Mircsof D, Opitz L, Mann M, Tyagarajan SK, Robles MS and Brown SA. The forebrain synaptic transcriptome is organized by clocks but its proteome is driven by sleep. Science. 2019;366.

3.         Bruning F, Noya SB, Bange T, Koutsouli S, Rudolph JD, Tyagarajan SK, Cox J, Mann M, Brown SA and Robles MS. Sleep-wake cycles drive daily dynamics of synaptic phosphorylation. Science. 2019;366.

Stroke or heart infarct?

According to a recent study by Daghlas and colleagues1, compared to sleeping 6 to 9 h/night, short sleepers have a 20% higher risk of having a heart attack; but, if you are a long sleeper (i.e., sleeping >9h/night), than your chances are even worse, because your risk increases to 34%. Even though the researchers don’t know the underlying cause for such susceptibilities, they claim sleeping too much or too little boosts inflammation in the body, which is associated with the development of heart disease. If you have a genetic predisposition for heart disease, this study found that sleeping between 6-9h, actually reduces your risk of having a heart attack by 18%, which is actually very good news, since not only diet and exercise can help you keep your heart healthy. More and more data, supports the evidence that we should consider sleep to be an adjustable and controllable risk factor for our good heath status2.

Speaking of diet, another study published recently in the Journal of the American Heart Association by Hyunju Kim and his team3, showed that healthy plant‐based diets, which are higher in whole grains, fruits, vegetables, nuts, legumes, tea, and coffee, and lower in animal foods, were associated with a lower risk of cardiovascular disease mortality and all‐cause mortality. Of course, they didn’t explore if the quality of plant foods (either healthy plant foods, or less-healthy plant foods) within the “framework of plant‐based diets” would be associated with cardiovascular disease and all‐cause mortality in the general population.

But, what is intriguing is that, another recent study by Tammy Tong and colleagues4, examined the associations of vegetarianism with risks of ischemic heart disease (i.e., coronary artery disease) and stroke. The results of this study showed that vegetarians had 20% higher rates of total stroke than meat eaters – which was equivalent to 3x more cases of stroke over 10 years; and, the associations for stroke did not soothe after adjustments to other disease risk factors. As the authors of the study say, vegetarian and vegan diets have become increasingly popular in recent years, partly due to perceived health benefits, as well as concerns about the environment and animal welfare; but, what the evidence suggests, is that vegetarians might have different disease risks compared with non-vegetarians. The study group of vegetarians and vegans in this cohort had lower circulating levels of several nutrients (e.g., vitamin B12, vitamin D, essential amino acids, and long chain n-3 polyunsaturated fatty acids), and differences in some of these nutritional factors could contribute to the increased stroke risk. Not only that, but a number of studies in Japan5, 6, showed that individuals with very low intake of animal products, also had an increased incidence and mortality from hemorrhagic and total stroke, implying that some factors connected with animal food intake might be protective for stroke. 

Its like Yin and Yang from ancient Chinese philosophy. Rather than opposing, or standing at the sides, our health and life is made of complementary forces that interact to form a dynamic system. It’s all about balance and balancing the sides (and diets).

All in life is balance
Balancing life’s way

References:

1.         Daghlas I, Dashti HS, Lane J, Aragam KG, Rutter MK, Saxena R and Vetter C. Sleep Duration and Myocardial Infarction. Journal of the American College of Cardiology. 2019;74:1304-1314.

2.         Tobaldini E, Fiorelli EM, Solbiati M, Costantino G, Nobili L and Montano N. Short sleep duration and cardiometabolic risk: from pathophysiology to clinical evidence. Nat Rev Cardiol. 2019;16:213-224.

3.         Kim H, Caulfield LE, Garcia-Larsen V, Steffen LM, Coresh J and Rebholz CM. Plant-Based Diets Are Associated With a Lower Risk of Incident Cardiovascular Disease, Cardiovascular Disease Mortality, and All-Cause Mortality in a General Population of Middle-Aged Adults. J Am Heart Assoc. 2019;8:e012865.

4.         Tong TYN, Appleby PN, Bradbury KE, Perez-Cornago A, Travis RC, Clarke R and Key TJ. Risks of ischaemic heart disease and stroke in meat eaters, fish eaters, and vegetarians over 18 years of follow-up: results from the prospective EPIC-Oxford study. BMJ. 2019;366:l4897.

5.         Kinjo Y, Beral V, Akiba S, Key T, Mizuno S, Appleby P, Yamaguchi N, Watanabe S and Doll R. Possible protective effect of milk, meat and fish for cerebrovascular disease mortality in Japan. J Epidemiol. 1999;9:268-74.

6.         Sauvaget C, Nagano J, Allen N, Grant EJ and Beral V. Intake of animal products and stroke mortality in the Hiroshima/Nagasaki Life Span Study. Int J Epidemiol. 2003;32:536-43.

Habenula, the Master of the Brain

The Habenula, is an area of our brains close to the pineal gland, that is involved in pain processing, reproductive behaviour, nutrition, sleep-wake cycles and stress responses, among other things1. A professor I used to know always said the Habenula was the Master of the Brain… and, indeed, recent research has provided evidence that this tiny bundle of nerves is able to produce Dimethyltryptamine (DMT), a psychedelic drug, “cousin” to the famous LySergic acid Diethylamide (LSD). 

DMT is internally bio-synthesized by the enzymes Aromatic-L-Amino acid DeCarboxylase (AADC) and Indolethylamine-N-Methyltransferase (INMT). Dean and colleagues2 were able to identify INMT messenger RNA in human tissues, by using a RNAscope in situ assay system; a highly sensitive technique, which proved for the first time a clear-cut identification of DMT and its enzymes in human brain. 

Outstanding, was the discovery that there was a significant increase of DMT levels in the rat brain after stimulation of experimental cardiac arrest; showing for the first time, that the brain is capable of synthesizing and releasing DMT under stress. 

This ultimately raises the possibility that this phenomenon may also occur in human brains, when we experience situations of extreme stress. The researchers attest that the cardiac arrest-induced increase of DMT may be related to “near-death experiences”, as reported by Timmermann and collegues3. This group recently reported that human subjects given exogenous DMT, experienced “near-death”-like mental states, including the subjective feeling of transcending one’s body and entering an alternative realm, perceiving and communicating with ‘entities’, and themes related to death and dying.

It’s unbelievable that the more we know about how our body and brain functions, the more I realize that our mind is a construction of our organic biological nature.

What we sometimes perceive as a mystical experience is probably just rooted in an organic mechanism that is tricking our minds into a “trip”.

Into the light

References:

1.         Namboodiri VM, Rodriguez-Romaguera J and Stuber GD. The habenula. Curr Biol. 2016;26:R873-R877.

2.         Jon G. Dean TL, Sean Huff, Ben Sheler, Steven A. Barker, Rick J. Strassman, Michael M. Wang & Jimo Borjigin Biosynthesis and Extracellular Concentrations of N,N-dimethyltryptamine (DMT) in Mammalian Brain. Scientific Reports. 2019;9.

3.         Timmermann C, Roseman L, Williams L, Erritzoe D, Martial C, Cassol H, Laureys S, Nutt D and Carhart-Harris R. DMT Models the Near-Death Experience. Front Psychol. 2018;9:1424.

Underwater banquet!

Cabal, is a term defined in the Merriam-Webster dictionary, as the contrived scheme of a group of persons secretly united in a plot (as to overturn a government, for example). 

But, if you talk in terms of Biology, cabals are also a series of synergistic venom peptides essential for the capture of prey. One animal venom can be a complex mixture of 10-200+ short chains of amino acids linked by bonds (peptides), working in a concerted mode to regulate physiological function, with very potent and precise molecular targets1.

For example, cone snails, a small venomous marine mollusk that hunts fish and worms, has ~850 species identified, with each expressing many thousands of unique peptides that selectively target a diverse range of voltage- and ligand-gated ion-channels, transporters and G-protein couple receptors2

These tiny wonders of nature have the ability to switch between predatory and defensive venom regimes. For example, if they just want to stunt a predator causing a flaccid paralysis, they will produce venom that has high levels of muscle blockers (motor cabal), and that inhibit sodium channels and nicotinic acetylcholine receptors. But, if in the mean time, they change their minds and intend to eat the prey, they use a combination of peptides that cause a rigid paralysis. This lightning-strike cabal has excitatory peptides that inhibit potassium channels and delay inactivation of sodium channels, causing the prey to lie “dead” until it is happily digested in an underwater banquet.

But, how does the cone snail decide whether it is fear or hunger that it’s “feeling” in that moment?

The simple neuronal circuit of the cone snail shifts from a contented state of inertia, to an active motion, stimulated by internal hunger and an appetite stimulus – just like us, slushing from the couch to the fridge looking for our night prey… The hunting activity of the Conus is then organized by a basic set of behavioral transitions. Once the cone snail detects a fish, through sensory signals, it becomes much more active and moves towards the fish extending its rostrum– a massive funnel formed by the muscular walls of the snail sheath; and, a long, thin trunk extends out in the open, where a harpoon-like tooth shoots out to pierce the skin of the fish3 – imagine if we could actually do the same to that bag of cookies that is lying in the shelve right next to the couch.

The active feeding of the cone snail tends to inhibit the avoidance, and the snail changes to a prevention mood once its appetite is satisfied4

Cone snail

Reference:

1.         Angell Y, Holford M and Moos WH. Building on Success: A Bright Future for Peptide Therapeutics. Protein Pept Lett. 2018;25:1044-1050.

2.         Himaya SWA, Mari F and Lewis RJ. Accelerated proteomic visualization of individual predatory venoms of Conus purpurascens reveals separately evolved predation-evoked venom cabals. Sci Rep. 2018;8:330.

3.         Olivera BM, Seger J, Horvath MP and Fedosov AE. Prey-Capture Strategies of Fish-Hunting Cone Snails: Behavior, Neurobiology and Evolution. Brain Behav Evol. 2015;86:58-74.

4.         Gillette R and Brown JW. The Sea Slug, Pleurobranchaea californica: A Signpost Species in the Evolution of Complex Nervous Systems and Behavior. Integr Comp Biol. 2015;55:1058-69.

Alcohol or Melatonin?

In 1958, in the Yale laboratories, A.B. Lerner and colleagues isolated melatonin from the pineal gland of bovines1. They were surprised that after 40 years of research they had finally found the active component that lightened the frog skin color, inhibiting the darkening effect of the Melanocyte Stimulating Hormone (MSH); hence the name, Melatonin1. Disappointingly, the skin lightening properties of melatonin could not be further demonstrated and the project was abandoned2. In the 90’s, melatonin got back on the coolness charts of science, with Reppert and Weaver calling it “Madness” in a Cell article in 1995. During this time, it was discovered its function in regulating the seasonal and circadian rhythms3, the presence of its specific G-coupled receptors in different tissues4; and, its antioxidant properties5. Since then, melatonin has been widely studied and continues to wonder over its broad range of therapeutic effects. From helping on jet-lag relief6, with insomnia7, being an anti-aging agent8, neuro-protective9, and also, improving cardiovascular diseases10: melatonin-madness continues until today.

Melatonin is widely accepted as a nutritional supplement being prescribed for sleep regulation in jetlag and adult sleep disorders; but in 2011 the U.S.A Food and Drug Administration (FDA), issued a warning to a company selling “relaxation brownies”, stating that the synthetic melatonin used in them hasn’t been proved safe as a food additive. Most commercial products are offered at dosages of 1-3mg of melatonin, which causes a spike of melatonin in the blood, reaching much higher levels than those that are naturally produced in the body somewhere between 50 and 200 pg/mL.

But, why use synthetic melatonin when this molecule is present in appetizing plants, nuts, fruits, meats, beverages and other foods11? The levels of melatonin in foods are much lower than those given as a nutritional supplement; but it has been proven that eating such foods drastically increases the circulating melatonin levels in the range of physiological concentrations, which peak at nighttime12, 13.

Maldonado and colleagues have shown that different types of beers are rich in melatonin; and, the more melatonin they have got, the greater is their alcoholic degree14. No wonder some people claim that beer makes them sleepy. But, Molfino15and I have made the same question: if the volunteers were sleepy, was it because of the melatonin or an alcoholic-mediated effect? So far, there’s still no answer to that question.

But, Garcia-Moreno and Maldonado’s group have shown, that Barley, which is malted and grounded in the early brewing process, and Yeast, during the second fermentation, are the largest contributors to the enrichment of beer with melatonin16. From this, we can deduct that not only beer has melatonin, but whatever drink where fermentation occurs, will also be rich in it. Logically, wine was also found to be a rich source of the Madness-molecule. In fact, beer has around 0,09 ng/mL while wine is up to 129,5 ng/mL11. And again, Rodriguez-Naranjo and colleagues showed that melatonin is formed during the alcoholic fermentation, because it is absent in the grapes and musts17.

 

References:

    1. Lerner ABC, J.D.; Takahashi, Y.; Lee, T.H.; Mori, W. Isolation of melatonin, a pineal factor that lightens melanocytes. J Am Chem Soc. 1958;80:2587.
    2. Jiki Z, Lecour S and Nduhirabandi F. Cardiovascular Benefits of Dietary Melatonin: A Myth or a Reality? Front Physiol. 2018;9:528.
    3. Arendt J. Melatonin and the pineal gland: influence on mammalian seasonal and circadian physiology. Rev Reprod. 1998;3:13-22.
    4. Reppert SM, Godson C, Mahle CD, Weaver DR, Slaugenhaupt SA and Gusella JF. Molecular characterization of a second melatonin receptor expressed in human retina and brain: the Mel1b melatonin receptor. Proc Natl Acad Sci U S A. 1995;92:8734-8.
    5. Hardeland R, Reiter RJ, Poeggeler B and Tan DX. The significance of the metabolism of the neurohormone melatonin: antioxidative protection and formation of bioactive substances. Neurosci Biobehav Rev. 1993;17:347-57.
    6. Sletten TL, Magee M, Murray JM, Gordon CJ, Lovato N, Kennaway DJ, Gwini SM, Bartlett DJ, Lockley SW, Lack LC, Grunstein RR, Rajaratnam SMW and Delayed Sleep on Melatonin Study G. Efficacy of melatonin with behavioural sleep-wake scheduling for delayed sleep-wake phase disorder: A double-blind, randomised clinical trial. PLoS Med. 2018;15:e1002587.
    7. Riemann D, Baglioni C, Bassetti C, Bjorvatn B, Dolenc Groselj L, Ellis JG, Espie CA, Garcia-Borreguero D, Gjerstad M, Goncalves M, Hertenstein E, Jansson-Frojmark M, Jennum PJ, Leger D, Nissen C, Parrino L, Paunio T, Pevernagie D, Verbraecken J, Weess HG, Wichniak A, Zavalko I, Arnardottir ES, Deleanu OC, Strazisar B, Zoetmulder M and Spiegelhalder K. European guideline for the diagnosis and treatment of insomnia. J Sleep Res. 2017;26:675-700.
    8. Day D, Burgess CM and Kircik LH. Assessing the Potential Role for Topical Melatonin in an Antiaging Skin Regimen. J Drugs Dermatol. 2018;17:966-969.
    9. Zhao Z, Lu C, Li T, Wang W, Ye W, Zeng R, Ni L, Lai Z, Wang X and Liu C. The protective effect of melatonin on brain ischemia and reperfusion in rats and humans: in vivo assessment and a randomized controlled trial. J Pineal Res. 2018:e12521.
    10. Liu Y, Li LN, Guo S, Zhao XY, Liu YZ, Liang C, Tu S, Wang D, Li L, Dong JZ, Gao L and Yang HB. Melatonin improves cardiac function in a mouse model of heart failure with preserved ejection fraction. Redox Biol. 2018;18:211-221.
    11. Meng X, Li Y, Li S, Zhou Y, Gan RY, Xu DP and Li HB. Dietary Sources and Bioactivities of Melatonin. Nutrients. 2017;9.
    12. Sae-Teaw M, Johns J, Johns NP and Subongkot S. Serum melatonin levels and antioxidant capacities after consumption of pineapple, orange, or banana by healthy male volunteers. J Pineal Res. 2013;55:58-64.
    13. Reiter RJ, Manchester LC and Tan DX. Melatonin in walnuts: influence on levels of melatonin and total antioxidant capacity of blood. Nutrition. 2005;21:920-4.
    14. Maldonado MD, Moreno H and Calvo JR. Melatonin present in beer contributes to increase the levels of melatonin and antioxidant capacity of the human serum. Clin Nutr. 2009;28:188-91.
    15. Molfino A, Laviano A and Rossi Fanelli F. Sleep-inducing effect of beer: a melatonin- or alcohol-mediated effect? Clin Nutr. 2010;29:272.
    16. Garcia-Moreno H, Calvo JR and Maldonado MD. High levels of melatonin generated during the brewing process. J Pineal Res. 2013;55:26-30.
    17. Rodriguez-Naranjo MI, Gil-Izquierdo A, Troncoso AM, Cantos-Villar E and Garcia-Parrilla MC. Melatonin is synthesised by yeast during alcoholic fermentation in wines. Food Chem. 2011;126:1608-13.

 

 

Evolution and melatonin

Since life has emerged on Earth, 3.7. billion years ago, the rising and setting of the Sun has been a constant. Whether it was light or dark, it was day or night. Humans, and all other organisms, have evolved with this imposed biological rhythm; and, human physiology was determined by the light/dark cycle.

Every cell in our bodies exhibits a circadian rhythm, a 24h-cycle synchronized to a light/dark pattern. But, how do cells deep inside in our bodies know when it’s dark outside? The answer to that question is Melatonin (N-acetyl-5-methoxytryptamine), the messenger from our brain to communicate to our cells that it is dark. The master clock of the body, the Suprachiasmatic Nucleus (SCN) receives darkness information from the retina and sends it to the brain. From there it provides an input to the Pineal Gland, to produce melatonin. Melatonin secretion increases in the evening, and is stimulated by darkness; whereas light rapidly suppresses melatonin production.

Melatonin is not unique to humans. It is spread through out the animal kingdom, plants, bacteria, and even unicellular organisms have it. There’s no species that has been identified so far that does not contain Melatonin. This expresses the importance of this molecule to life.